Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
J Proteome Res ; 2024 May 08.
Article in English | MEDLINE | ID: mdl-38717300

ABSTRACT

The availability of an increasingly large amount of public proteomics data sets presents an opportunity for performing combined analyses to generate comprehensive organism-wide protein expression maps across different organisms and biological conditions. Sus scrofa, a domestic pig, is a model organism relevant for food production and for human biomedical research. Here, we reanalyzed 14 public proteomics data sets from the PRIDE database coming from pig tissues to assess baseline (without any biological perturbation) protein abundance in 14 organs, encompassing a total of 20 healthy tissues from 128 samples. The analysis involved the quantification of protein abundance in 599 mass spectrometry runs. We compared protein expression patterns among different pig organs and examined the distribution of proteins across these organs. Then, we studied how protein abundances were compared across different data sets and studied the tissue specificity of the detected proteins. Of particular interest, we conducted a comparative analysis of protein expression between pig and human tissues, revealing a high degree of correlation in protein expression among orthologs, particularly in brain, kidney, heart, and liver samples. We have integrated the protein expression results into the Expression Atlas resource for easy access and visualization of the protein expression data individually or alongside gene expression data.

2.
Nucleic Acids Res ; 52(D1): D107-D114, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-37992296

ABSTRACT

Expression Atlas (www.ebi.ac.uk/gxa) and its newest counterpart the Single Cell Expression Atlas (www.ebi.ac.uk/gxa/sc) are EMBL-EBI's knowledgebases for gene and protein expression and localisation in bulk and at single cell level. These resources aim to allow users to investigate their expression in normal tissue (baseline) or in response to perturbations such as disease or changes to genotype (differential) across multiple species. Users are invited to search for genes or metadata terms across species or biological conditions in a standardised consistent interface. Alongside these data, new features in Single Cell Expression Atlas allow users to query metadata through our new cell type wheel search. At the experiment level data can be explored through two types of dimensionality reduction plots, t-distributed Stochastic Neighbor Embedding (tSNE) and Uniform Manifold Approximation and Projection (UMAP), overlaid with either clustering or metadata information to assist users' understanding. Data are also visualised as marker gene heatmaps identifying genes that help confer cluster identity. For some data, additional visualisations are available as interactive cell level anatomograms and cell type gene expression heatmaps.


Subject(s)
Databases, Genetic , Gene Expression Profiling , Proteomics , Genotype , Metadata , Single-Cell Analysis , Internet , Humans , Animals
3.
PLoS Comput Biol ; 18(6): e1010174, 2022 06.
Article in English | MEDLINE | ID: mdl-35714157

ABSTRACT

The increasingly large amount of proteomics data in the public domain enables, among other applications, the combined analyses of datasets to create comparative protein expression maps covering different organisms and different biological conditions. Here we have reanalysed public proteomics datasets from mouse and rat tissues (14 and 9 datasets, respectively), to assess baseline protein abundance. Overall, the aggregated dataset contained 23 individual datasets, including a total of 211 samples coming from 34 different tissues across 14 organs, comprising 9 mouse and 3 rat strains, respectively. In all cases, we studied the distribution of canonical proteins between the different organs. The number of canonical proteins per dataset ranged from 273 (tendon) and 9,715 (liver) in mouse, and from 101 (tendon) and 6,130 (kidney) in rat. Then, we studied how protein abundances compared across different datasets and organs for both species. As a key point we carried out a comparative analysis of protein expression between mouse, rat and human tissues. We observed a high level of correlation of protein expression among orthologs between all three species in brain, kidney, heart and liver samples, whereas the correlation of protein expression was generally slightly lower between organs within the same species. Protein expression results have been integrated into the resource Expression Atlas for widespread dissemination.


Subject(s)
Proteins , Proteomics , Animals , Brain/metabolism , Mice , Proteins/metabolism , Rats
4.
Nucleic Acids Res ; 50(D1): D129-D140, 2022 01 07.
Article in English | MEDLINE | ID: mdl-34850121

ABSTRACT

The EMBL-EBI Expression Atlas is an added value knowledge base that enables researchers to answer the question of where (tissue, organism part, developmental stage, cell type) and under which conditions (disease, treatment, gender, etc) a gene or protein of interest is expressed. Expression Atlas brings together data from >4500 expression studies from >65 different species, across different conditions and tissues. It makes these data freely available in an easy to visualise form, after expert curation to accurately represent the intended experimental design, re-analysed via standardised pipelines that rely on open-source community developed tools. Each study's metadata are annotated using ontologies. The data are re-analyzed with the aim of reproducing the original conclusions of the underlying experiments. Expression Atlas is currently divided into Bulk Expression Atlas and Single Cell Expression Atlas. Expression Atlas contains data from differential studies (microarray and bulk RNA-Seq) and baseline studies (bulk RNA-Seq and proteomics), whereas Single Cell Expression Atlas is currently dedicated to Single Cell RNA-Sequencing (scRNA-Seq) studies. The resource has been in continuous development since 2009 and it is available at https://www.ebi.ac.uk/gxa.


Subject(s)
Databases, Genetic , Proteins/genetics , Proteomics , Software , Computational Biology , Gene Expression Profiling , Humans , Proteins/chemistry , RNA-Seq , Sequence Analysis, RNA , Single-Cell Analysis
5.
Nat Commun ; 12(1): 5854, 2021 10 06.
Article in English | MEDLINE | ID: mdl-34615866

ABSTRACT

The amount of public proteomics data is rapidly increasing but there is no standardized format to describe the sample metadata and their relationship with the dataset files in a way that fully supports their understanding or reanalysis. Here we propose to develop the transcriptomics data format MAGE-TAB into a standard representation for proteomics sample metadata. We implement MAGE-TAB-Proteomics in a crowdsourcing project to manually curate over 200 public datasets. We also describe tools and libraries to validate and submit sample metadata-related information to the PRIDE repository. We expect that these developments will improve the reproducibility and facilitate the reanalysis and integration of public proteomics datasets.


Subject(s)
Data Analysis , Databases, Protein , Metadata , Proteomics , Big Data , Humans , Reproducibility of Results , Software , Transcriptome
7.
Nucleic Acids Res ; 49(D1): D1502-D1506, 2021 01 08.
Article in English | MEDLINE | ID: mdl-33211879

ABSTRACT

ArrayExpress (https://www.ebi.ac.uk/arrayexpress) is an archive of functional genomics data at EMBL-EBI, established in 2002, initially as an archive for publication-related microarray data and was later extended to accept sequencing-based data. Over the last decade an increasing share of biological experiments involve multiple technologies assaying different biological modalities, such as epigenetics, and RNA and protein expression, and thus the BioStudies database (https://www.ebi.ac.uk/biostudies) was established to deal with such multimodal data. Its central concept is a study, which typically is associated with a publication. BioStudies stores metadata describing the study, provides links to the relevant databases, such as European Nucleotide Archive (ENA), as well as hosts the types of data for which specialized databases do not exist. With BioStudies now fully functional, we are able to further harmonize the archival data infrastructure at EMBL-EBI, and ArrayExpress is being migrated to BioStudies. In future, all functional genomics data will be archived at BioStudies. The process will be seamless for the users, who will continue to submit data using the online tool Annotare and will be able to query and download data largely in the same manner as before. Nevertheless, some technical aspects, particularly programmatic access, will change. This update guides the users through these changes.


Subject(s)
Databases, Genetic , Epigenesis, Genetic , Genomics/methods , High-Throughput Nucleotide Sequencing/statistics & numerical data , Oligonucleotide Array Sequence Analysis/statistics & numerical data , Animals , Cell Line , DNA Methylation , Gene Expression Profiling , Humans , Internet , Metadata , Organ Specificity , Plants/genetics , Single-Cell Analysis , Software
9.
Nucleic Acids Res ; 48(D1): D689-D695, 2020 01 08.
Article in English | MEDLINE | ID: mdl-31598706

ABSTRACT

Ensembl Genomes (http://www.ensemblgenomes.org) is an integrating resource for genome-scale data from non-vertebrate species, complementing the resources for vertebrate genomics developed in the context of the Ensembl project (http://www.ensembl.org). Together, the two resources provide a consistent set of interfaces to genomic data across the tree of life, including reference genome sequence, gene models, transcriptional data, genetic variation and comparative analysis. Data may be accessed via our website, online tools platform and programmatic interfaces, with updates made four times per year (in synchrony with Ensembl). Here, we provide an overview of Ensembl Genomes, with a focus on recent developments. These include the continued growth, more robust and reproducible sets of orthologues and paralogues, and enriched views of gene expression and gene function in plants. Finally, we report on our continued deeper integration with the Ensembl project, which forms a key part of our future strategy for dealing with the increasing quantity of available genome-scale data across the tree of life.


Subject(s)
Computational Biology/methods , Databases, Genetic , Genetic Variation , Genome, Bacterial , Genome, Fungal , Genome, Plant , Algorithms , Animals , Caenorhabditis elegans/genetics , Genomics , Internet , Molecular Sequence Annotation , Phenotype , Plants/genetics , Reference Values , Software , User-Computer Interface
10.
Nucleic Acids Res ; 48(D1): D77-D83, 2020 01 08.
Article in English | MEDLINE | ID: mdl-31665515

ABSTRACT

Expression Atlas is EMBL-EBI's resource for gene and protein expression. It sources and compiles data on the abundance and localisation of RNA and proteins in various biological systems and contexts and provides open access to this data for the research community. With the increased availability of single cell RNA-Seq datasets in the public archives, we have now extended Expression Atlas with a new added-value service to display gene expression in single cells. Single Cell Expression Atlas was launched in 2018 and currently includes 123 single cell RNA-Seq studies from 12 species. The website can be searched by genes within or across species to reveal experiments, tissues and cell types where this gene is expressed or under which conditions it is a marker gene. Within each study, cells can be visualized using a pre-calculated t-SNE plot and can be coloured by different features or by cell clusters based on gene expression. Within each experiment, there are links to downloadable files, such as RNA quantification matrices, clustering results, reports on protocols and associated metadata, such as assigned cell types.


Subject(s)
Computational Biology/methods , Databases, Nucleic Acid , Gene Expression Profiling , Software , Gene Expression Profiling/methods , Organ Specificity , Single-Cell Analysis/methods , User-Computer Interface
11.
Front Physiol ; 10: 1442, 2019.
Article in English | MEDLINE | ID: mdl-31849700

ABSTRACT

Drosophila melanogaster has served as an excellent genetic model to decipher the molecular basis of the circadian clock. Two key proteins, PERIOD (PER) and TIMELESS (TIM), are particularly well explored and a number of various arrhythmic, slow, and fast clock mutants have been identified in classical genetic screens. Interestingly, the free running period (tau, τ) is influenced by temperature in some of these mutants, whereas τ is temperature-independent in other mutant lines as in wild-type flies. This, so-called "temperature compensation" ability is compromised in the mutant timeless allele "ritsu" (tim rit ), and, as we show here, also in the tim blind allele, mapping to the same region of TIM. To test if this region of TIM is indeed important for temperature compensation, we generated a collection of new mutants and mapped functional protein domains involved in the regulation of τ and in general clock function. We developed a protocol for targeted mutagenesis of specific gene regions utilizing the CRISPR/Cas9 technology, followed by behavioral screening. In this pilot study, we identified 20 new timeless mutant alleles with various impairments of temperature compensation. Molecular characterization revealed that the mutations included short in-frame insertions, deletions, or substitutions of a few amino acids resulting from the non-homologous end joining repair process. Our protocol is a fast and cost-efficient systematic approach for functional analysis of protein-coding genes and promoter analysis in vivo. Interestingly, several mutations with a strong temperature compensation defect map to one specific region of TIM. Although the exact mechanism of how these mutations affect TIM function is as yet unknown, our in silico analysis suggests they affect a putative nuclear export signal (NES) and phosphorylation sites of TIM. Immunostaining for PER was performed on two TIM mutants that display longer τ at 25°C and complete arrhythmicity at 28°C. Consistently with the behavioral phenotype, PER immunoreactivity was reduced in circadian clock neurons of flies exposed to elevated temperatures.

12.
PLoS Genet ; 13(11): e1007096, 2017 Nov.
Article in English | MEDLINE | ID: mdl-29155828

ABSTRACT

Repressors are frequently deployed to limit the transcriptional response to signalling pathways. For example, several co-repressors interact directly with the DNA-binding protein CSL and are proposed to keep target genes silenced in the absence of Notch activity. However, the scope of their contributions remains unclear. To investigate co-repressor activity in the context of this well defined signalling pathway, we have analysed the genome-wide binding profile of the best-characterized CSL co-repressor in Drosophila, Hairless, and of a second CSL interacting repressor, SMRTER. As predicted there was significant overlap between Hairless and its CSL DNA-binding partner, both in Kc cells and in wing discs, where they were predominantly found in chromatin with active enhancer marks. However, while the Hairless complex was widely present at some Notch regulated enhancers in the wing disc, no binding was detected at others, indicating that it is not essential for silencing per se. Further analysis of target enhancers confirmed differential requirements for Hairless. SMRTER binding significantly overlapped with Hairless, rather than complementing it, and many enhancers were apparently co-bound by both factors. Our analysis indicates that the actions of Hairless and SMRTER gate enhancers to Notch activity and to Ecdysone signalling respectively, to ensure that the appropriate levels and timing of target gene expression are achieved.


Subject(s)
Drosophila Proteins/genetics , Receptors, Notch/genetics , Receptors, Notch/metabolism , Transcription Factors/genetics , Animals , Binding Sites , Co-Repressor Proteins/genetics , Co-Repressor Proteins/metabolism , DNA-Binding Proteins/genetics , Drosophila Proteins/metabolism , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Ecdysone/metabolism , Gene Expression Regulation, Developmental/genetics , Genomics , Protein Binding , Regulatory Sequences, Nucleic Acid/genetics , Repressor Proteins/genetics , Signal Transduction , Transcription Factors/metabolism
13.
Insect Biochem Mol Biol ; 45: 69-76, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24361539

ABSTRACT

Juvenile hormone (JH), a sesquiterpenoid produced by the insect corpus allatum gland (CA), prevents metamorphosis in larvae and stimulates vitellogenesis in adult females. Whether the same JH signaling pathway regulates both processes is presently unknown. Here, we employ the robust JH response during reproduction and development of the linden bug, Pyrrhocoris apterus, to compare the function of key JH-signaling genes encoding the JH receptor, Methoprene-tolerant (Met), its binding partner Taiman (Tai), and a JH-inducible protein, Krüppel-homolog 1 (Kr-h1). RNA interference (RNAi) with Met or Tai, but not Kr-h1, blocked ovarian development and suppressed vitellogenin gene expression in the fat body of females raised under reproduction-inducing conditions. Loss of Met and Tai matched the effects of CA ablation or the natural absence of JH during reproductive diapause. Stimulation of vitellogenesis by treatment of diapausing females with a JH mimic methoprene also required both Met and Tai in the fat body, whereas Kr-h1 RNAi had no effect. Therefore, the Met-Tai complex likely functions as a JH receptor during vitellogenesis. In contrast to Met and Kr-h1 that are both required for JH to prevent precocious metamorphosis in P. apterus larvae, removal of Tai disrupted larval ecdysis without causing premature adult development. Our results show that while Met operates during metamorphosis in larvae and reproduction in adult females, its partner Tai is only required for the latter. The diverse functions of JH thus likely rely on a common receptor whose actions are modulated by distinct components.


Subject(s)
Heteroptera/physiology , Juvenile Hormones/metabolism , Animals , Diapause, Insect , Heteroptera/growth & development , Heteroptera/metabolism , Larva/growth & development , Larva/metabolism , Larva/physiology , Molting , Reproduction , Sexual Behavior, Animal , Signal Transduction
14.
EMBO J ; 32(1): 60-71, 2013 Jan 09.
Article in English | MEDLINE | ID: mdl-23232763

ABSTRACT

The outcome of the Notch pathway on proliferation depends on cellular context, being growth promotion in some, including several cancers, and growth inhibition in others. Such disparate outcomes are evident in Drosophila wing discs, where Notch overactivation causes hyperplasia despite having localized inhibitory effects on proliferation. To understand the underlying mechanisms, we have used genomic strategies to identify the Notch-CSL target genes directly activated during wing disc hyperplasia. Among them were genes involved in both autonomous and non-autonomous regulation of proliferation, growth and cell death, providing molecular explanations for many characteristics of Notch induced wing disc hyperplasia previously reported. The Notch targets exhibit different response patterns, which are shaped by both positive and negative feed-forward regulation between the Notch targets themselves. We propose, therefore, that both the characteristics of the direct Notch targets and their cross-regulatory relationships are important in coordinating the pattern of hyperplasia.


Subject(s)
Drosophila Proteins/genetics , Drosophila/genetics , Hyperplasia/genetics , Receptors, Notch/genetics , Signal Transduction/physiology , Wings, Animal/embryology , Animals , Animals, Genetically Modified , Cell Division , Cell Proliferation , Chromatin Immunoprecipitation , Drosophila/embryology , Drosophila/growth & development , Drosophila/physiology , Drosophila Proteins/metabolism , Female , Gene Expression Profiling , Gene Expression Regulation, Developmental , Genomics , Male , Oligonucleotide Array Sequence Analysis , Phenotype , Receptors, Notch/metabolism , Wings, Animal/growth & development , Wings, Animal/physiology
15.
J Biol Rhythms ; 27(3): 206-16, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22653889

ABSTRACT

Females of the Indian meal moth, Plodia interpunctella, and females of the Mediterranean flour month, Ephestia kuehniella (both Lepidoptera: Pyralidae), exhibit daily rhythms in calling behavior. The peak in P. interpunctella calling occurs at dusk, whereas E. kuehniella calls preferentially at dawn. This behavior turned arrhythmic in P. interpunctella females in constant darkness (DD) and remained arrhythmic in constant light (LL), whereas E. kuehniella females showed a persistent rhythm in DD and suppression of the behavior in LL, indicating regulation by a circadian clock mechanism. The rhythm of male locomotor activity corresponded well with the sexual activity of females, reaching the peak at dusk in P. interpunctella and at dawn in E. kuehniella. An immunohistochemical study of the pheromone biosynthesis activating neuropeptide, corazonin, and pigment dispersing factor revealed distinct sets of neurons in the brain-subesophageal complex and in the neurohemal organs of the 2 species.


Subject(s)
Circadian Rhythm , Moths/physiology , Animal Communication , Animals , Female , Hormones/metabolism , Immunohistochemistry/methods , Insecta , Light , Male , Models, Biological , Neuropeptides/chemistry , Pheromones/metabolism , Pigmentation , Sex Attractants , Sex Factors , Sexual Behavior, Animal , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...