Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 53
Filter
Add more filters










Publication year range
1.
J Am Chem Soc ; 143(34): 13573-13578, 2021 09 01.
Article in English | MEDLINE | ID: mdl-34465097

ABSTRACT

We define ΔGGA as the free energy change for the formal equilibrium: [13]G-H + 1-X-adamantane → [13]G-X + adamantane, where [13]G-H is the C13H22 fragment of all-trans graphane with 3-fold symmetry. This compares with a situation where the group X is equatorial to three cyclohexane rings with one where it is axial to three rings. ΔGGA values vary from 2.9 (CN) to 145.7 kJ mol-1 (CCl3), and this wide range means that ΔG can be calculated with confidence. ΔGGA values for Me, Et, i-Pr, and t-Bu form a regular series, 34.9, 63.3, 101.6, and 142.0, and clearly reflect the steric size of the groups. We propose a model where the six axial hydrogens surrounding X on [13]G-X provide a nearly circular constriction on the substituent close to its point of attachment but which does not extend far above this. We compare these results with A values and with calculations on 2- and 7-substituted [1(2,3)4]pentamantanes. We show that electronic effects on ΔGGA values are negligible but that they correlate well with computed cone and solid angles subtended by the substituent.

3.
Acc Chem Res ; 54(4): 837-848, 2021 02 16.
Article in English | MEDLINE | ID: mdl-33533587

ABSTRACT

Computers have become closely involved with most aspects of modern life, and these developments are tracked in the chemical sciences. Recent years have seen the integration of computing across chemical research, made possible by investment in equipment, software development, improved networking between researchers, and rapid growth in the application of predictive approaches to chemistry, but also a change of attitude rooted in the successes of computational chemistry-it is now entirely possible to complete research projects where computation and synthesis are cooperative and integrated, and work in synergy to achieve better insights and improved results. It remains our ambition to put computational prediction before experiment, and we have been working toward developing the key ingredients and workflows to achieve this.The ability to precisely tune selectivity along with high catalyst activity make organometallic catalysts using transition metal (TM) centers ideal for high-value-added transformations, and this can make them appealing for industrial applications. However, mechanistic variations of TM-catalyzed reactions across the vast chemical space of different catalysts and substrates are not fully explored, and such an exploration is not feasible with current resources. This can lead to complete synthetic failures when new substrates are used, but more commonly we see outcomes that require further optimization, such as incomplete conversion, insufficient selectivity, or the appearance of unwanted side products. These processes consume time and resources, but the insights and data generated are usually not tied to a broader predictive workflow where experiments test hypotheses quantitatively, reducing their impact.These failures suggest at least a partial deviation of the reaction pathway from that hypothesized, hinting at quite complex mechanistic manifolds for organometallic catalysts that are affected by the combination of input variables. Mechanistic deviation is most likely when challenging multifunctional substrates are being used, and the quest for so-called privileged catalysts is quickly replaced by a need to screen catalyst libraries until a new "best" match between the catalyst and substrate can be identified and the reaction conditions can be optimized. As a community we remain confined to broad interpretations of the substrate scope of new catalysts and focus on small changes based on idealized catalytic cycles rather than working toward a "big data" view of organometallic homogeneous catalysis with routine use of predictive models and transparent data sharing.Databases of DFT-calculated steric and electronic descriptors can be built for such catalysts, and we summarize here how these can be used in the mapping, interpretation, and prediction of catalyst properties and reactivities. Our motivation is to make these databases useful as tools for synthetic chemists so that they challenge and validate quantitative computational approaches. In this Account, we demonstrate their application to different aspects of catalyst design and discovery and their integration with computational mechanistic studies and thus describe the progress of our journey toward truly predictive models in homogeneous organometallic catalysis.

4.
Org Biomol Chem ; 19(17): 3813-3819, 2021 05 05.
Article in English | MEDLINE | ID: mdl-33606866

ABSTRACT

The mcr-1 gene encodes a membrane-bound Zn2+-metalloenzyme, MCR-1, which catalyses phosphoethanolamine transfer onto bacterial lipid A, making bacteria resistant to colistin, a last-resort antibiotic. Mechanistic understanding of this process remains incomplete. Here, we investigate possible catalytic pathways using DFT and ab initio calculations on cluster models and identify a complete two-step reaction mechanism. The first step, formation of a covalent phosphointermediate via transfer of phosphoethanolamine from a membrane phospholipid donor to the acceptor Thr285, is rate-limiting and proceeds with a single Zn2+ ion. The second step, transfer of the phosphoethanolamine group to lipid A, requires an additional Zn2+. The calculations suggest the involvement of the Zn2+ orbitals directly in the reaction is limited, with the second Zn2+ acting to bind incoming lipid A and direct phosphoethanolamine addition. The new level of mechanistic detail obtained here, which distinguishes these enzymes from other phosphotransferases, will aid in the development of inhibitors specific to MCR-1 and related bacterial phosphoethanolamine transferases.


Subject(s)
Drug Resistance, Bacterial
5.
Chemistry ; 27(19): 5972-5977, 2021 Apr 01.
Article in English | MEDLINE | ID: mdl-33492679

ABSTRACT

Iron-catalyzed isomerization of alkenes is reported using an iron(II) ß-diketiminate pre-catalyst. The reaction proceeds with a catalytic amount of a hydride source, such as pinacol borane (HBpin) or ammonia borane (H3 N⋅BH3 ). Reactivity with both allyl arenes and aliphatic alkenes has been studied. The catalytic mechanism was investigated by a variety of means, including deuteration studies, Density Functional Theory (DFT) and Electron Paramagnetic Resonance (EPR) spectroscopy. The data obtained support a pre-catalyst activation step that gives access to an η2 -coordinated alkene FeI complex, followed by oxidative addition of the alkene to give an FeIII intermediate, which then undergoes reductive elimination to allow release of the isomerization product.

6.
Chemistry ; 27(7): 2402-2409, 2021 Feb 01.
Article in English | MEDLINE | ID: mdl-32964545

ABSTRACT

The chemistry of dirhodium(II) catalysts is highly diverse, and can enable the synthesis of many different molecular classes. A tool to aid in catalyst selection, independent of mechanism and reactivity, would therefore be highly desirable. Here, we describe the development of a database for dirhodium(II) catalysts that is based on the principal component analysis of DFT-calculated parameters capturing their steric and electronic properties. This database maps the relevant catalyst space, and may facilitate exploration of the reactivity landscape for any process catalysed by dirhodium(II) complexes. We have shown that one of the principal components of these catalysts correlates with the outcome (e.g. yield, selectivity) of a transformation used in a molecular discovery project. Furthermore, we envisage that this approach will assist the selection of more effective catalyst screening sets, and, hence, the data-led optimisation of a wide range of rhodium-catalysed transformations.

7.
Angew Chem Int Ed Engl ; 59(50): 22403-22407, 2020 12 07.
Article in English | MEDLINE | ID: mdl-32866342

ABSTRACT

The synthetically versatile pinacol boronic ester group (Bpin) is generally thought of as a bulky moiety because of the two adjacent quaternary sp3 -hydribized carbon atoms in its diol backbone. However, recent diastereoselective reactions reported in the literature have cast doubt on this perception. Reported herein is a detailed experimental and computational analysis of Bpin and structurally related boronic esters which allows determination of three different steric parameters for the Bpin group: the A-value, ligand cone angle, and percent buried volume. All three parameters suggest that the Bpin moiety is remarkably small, with the planarity of the oxygen-boron-oxygen motif playing an important role in minimising steric interactions. Of the three steric parameters, percent buried volume provides the best correlation between steric size and diastereoselectivity in a Diels-Alder reaction.

8.
Dalton Trans ; 49(24): 8169-8178, 2020 Jun 23.
Article in English | MEDLINE | ID: mdl-32510533

ABSTRACT

We have extended the Ligand Knowledge Base (LKB) approach to consider a broad range of bidentate ligands, varying donors, substituents and backbones, which gives rise to a diverse set of 224 ligands in a new database, LKB-bid. Using a subset of steric and electronic parameters described previously for bidentate P,P-donor ligands (LKB-PP), here this approach has been applied to a wider set of bidentate ligands, to explore how these modifications affect the properties of organometallic complexes. The resulting database has been processed with Principal Component Analysis (PCA), generating a "map" of ligand space which highlights the contribution of donor atoms and bridge length to the variation in ligand properties. This mapping of bidentate ligand space with DFT-calculated steric and electronic parameters has demonstrated that the properties of ligands with different donor atoms can be captured within a single computational approach, providing both an overview of ligand space and scope for the more detailed investigation and comparison of different ligand classes.

9.
Chem Commun (Camb) ; 56(50): 6874-6877, 2020 Jun 23.
Article in English | MEDLINE | ID: mdl-32432618

ABSTRACT

MCR (mobile colistin resistance) enzymes catalyse phosphoethanolamine (PEA) addition to bacterial lipid A, threatening the "last-resort" antibiotic colistin. Molecular dynamics and density functional theory simulations indicate that monozinc MCR supports PEA transfer to the Thr285 acceptor, positioning MCR as a mono- rather than multinuclear member of the alkaline phosphatase superfamily.


Subject(s)
Alkaline Phosphatase/chemistry , Anti-Bacterial Agents/chemistry , Bacterial Proteins/chemistry , Colistin/chemistry , Drug Resistance, Bacterial , Zinc/chemistry , Ethanolamines/chemistry , Lipid A/chemistry , Molecular Dynamics Simulation
10.
Angew Chem Int Ed Engl ; 59(16): 6525-6528, 2020 04 16.
Article in English | MEDLINE | ID: mdl-31912963

ABSTRACT

There are a limited number of ring-contraction methodologies which convert readily available five-membered rings into strained four-membered rings. Here we report a photo-induced radical-mediated ring contraction of five-membered-ring alkenyl boronate complexes into cyclobutanes. The process involves the addition of an electrophilic radical to the electron-rich alkenyl boronate complex, leading to an α-boryl radical. Upon one-electron oxidation, ring-contractive 1,2-metalate rearrangement occurs to give a cyclobutyl boronic ester. A range of radical precursors and vinyl boronates can be employed, and chiral cyclobutanes can be accessed with high levels of stereocontrol. The process was extended to the preparation of benzofused cyclobutenes and the versatility of the boronic ester was demonstrated by conversion to other functional groups.

14.
Inorg Chem ; 58(21): 14818-14829, 2019 Nov 04.
Article in English | MEDLINE | ID: mdl-31638782

ABSTRACT

Three new carboranylphosphines, [1-(1'-closo-1',7'-C2B10H11)-7-PPh2-closo-1,7-C2B10H10], [1-(1'-7'-PPh2-closo-1',7'-C2B10H10)-7-PPh2-closo-1,7-C2B10H10], and [1-{PPh-(1'-closo-1',2'-C2B10H11)}-closo-1,2-C2B10H11], have been prepared, and from a combination of these and literature compounds, eight new carboranylphosphine selenides were subsequently synthesized. The relative basicities of the carboranylphosphines were established by (i) measurement of the 1JPSe NMR coupling constant of the selenide and (ii) calculation of the proton affinity of the phosphine, in an attempt to establish which of several factors are the most important in controlling the basicity. It is found that the basicity of the carboranylphosphines is significantly influenced by the nature of other substituents on the P atom, the nature of the carborane cage vertex (C or B) to which the P atom is attached, and the charge on the carboranylphosphine. In contrast, the basicity of the carboranylphosphines appears to be relatively insensitive to the nature of other substituents on the carborane cage, the isomeric form of the carborane, and whether the cage is closo or nido (insofar as that does not alter the charge on the cluster). Such information is likely to be of significant importance in optimizing future applications of carboranylphosphines, e.g., as components of frustrated Lewis pairs.

15.
Chem Commun (Camb) ; 55(49): 7021-7024, 2019 Jun 13.
Article in English | MEDLINE | ID: mdl-31143911

ABSTRACT

DFT calculations were used to capture the properties of redox-switchable metal complexes relevant to the ring-opening polymerisation of cyclic esters by varying the metals, donors, linkers, and substituents in both accessible ferrocene oxidation states. A map of this chemical space highlights that modifying the ligand architecture and the metal has a larger impact on structural changes than changing the oxidation state of the ferrocene backbone.

16.
Chem Rev ; 119(11): 6561-6594, 2019 06 12.
Article in English | MEDLINE | ID: mdl-30802036

ABSTRACT

Ligands, especially phosphines and carbenes, can play a key role in modifying and controlling homogeneous organometallic catalysts, and they often provide a convenient approach to fine-tuning the performance of known catalysts. The measurable outcomes of such catalyst modifications (yields, rates, selectivity) can be set into context by establishing their relationship to steric and electronic descriptors of ligand properties, and such models can guide the discovery, optimization, and design of catalysts. In this review we present a survey of calculated ligand descriptors, with a particular focus on homogeneous organometallic catalysis. A range of different approaches to calculating steric and electronic parameters are set out and compared, and we have collected descriptors for a range of representative ligand sets, including 30 monodentate phosphorus(III) donor ligands, 23 bidentate P,P-donor ligands, and 30 carbenes, with a view to providing a useful resource for analysis to practitioners. In addition, several case studies of applications of such descriptors, covering both maps and models, have been reviewed, illustrating how descriptor-led studies of catalysis can inform experiments and highlighting good practice for model comparison and evaluation.

17.
Angew Chem Int Ed Engl ; 58(8): 2418-2422, 2019 02 18.
Article in English | MEDLINE | ID: mdl-30600901

ABSTRACT

Both E- and Z-N'-alkenyl urea derivatives of imidazolidinones may be formed selectively from enantiopure α-amino acids. Generation of their enolate derivatives in the presence of K+ and [18]crown-6 induces intramolecular migration of the alkenyl group from N' to Cα with retention of double bond geometry. DFT calculations indicate a partially concerted substitution mechanism. Hydrolysis of the enantiopure products under acid conditions reveals quaternary α-alkenyl amino acids with stereodivergent control of both absolute configuration and double bond geometry.

18.
Angew Chem Int Ed Engl ; 57(48): 15802-15806, 2018 Nov 26.
Article in English | MEDLINE | ID: mdl-30311990

ABSTRACT

A completely inorganic version of one of the most famous organophosphorus compounds, triphenylphosphine, has been prepared. A comparison of the crystal structures of inorganic triphenylphosphine, PBaz3 (where Baz=B3 H2 N3 H3 ) and PPh3 shows that they have superficial similarities and furthermore, the Lewis basicities of the two compounds are remarkably similar. However, their oxygenation and hydrolysis reactions are starkly different. PBaz3 reacts quantitatively with water to give PH3 and with the oxidizing agent ONMe3 to give the triply-O-inserted product P(OBaz)3 , an inorganic version of triphenyl phosphite; a corresponding transformation with PPh3 is inconceivable. Thermodynamically, what drives these striking differences in the chemistry of PBaz3 and PPh3 is the great strength of the B-O bond.

19.
Biochemistry ; 57(13): 1997-2008, 2018 04 03.
Article in English | MEDLINE | ID: mdl-29533655

ABSTRACT

Monoterpenoids offer potential as biocatalytically derived monomer feedstocks for high-performance renewable polymers. We describe a biocatalytic route to lactone monomers menthide and dihydrocarvide employing Baeyer-Villiger monooxygenases (BVMOs) from Pseudomonas sp. HI-70 (CPDMO) and Rhodococcus sp. Phi1 (CHMOPhi1) as an alternative to organic synthesis. The regioselectivity of dihydrocarvide isomer formation was controlled by site-directed mutagenesis of three key active site residues in CHMOPhi1. A combination of crystal structure determination, molecular dynamics simulations, and mechanistic modeling using density functional theory on a range of models provides insight into the origins of the discrimination of the wild type and a variant CHMOPhi1 for producing different regioisomers of the lactone product. Ring-opening polymerizations of the resultant lactones using mild metal-organic catalysts demonstrate their utility in polymer production. This semisynthetic approach utilizing a biocatalytic step, non-petroleum feedstocks, and mild polymerization catalysts allows access to known and also to previously unreported and potentially novel lactone monomers and polymers.


Subject(s)
Bacterial Proteins/chemistry , Lactones/chemistry , Mixed Function Oxygenases/chemistry , Monoterpenes/chemistry , Pseudomonas/enzymology , Rhodococcus/enzymology , Catalysis
20.
Angew Chem Int Ed Engl ; 56(46): 14531-14535, 2017 11 13.
Article in English | MEDLINE | ID: mdl-28925055

ABSTRACT

A C-N bond forming dearomatization protocol with broad scope is outlined. Specifically, bifunctional amino reagents are used for sequential nucleophilic and electrophilic C-N bond formations, with the latter effecting the key dearomatization step. Using this approach, γ-arylated alcohols are converted to a wide range of differentially protected spirocyclic pyrrolidines in just two or three steps.

SELECTION OF CITATIONS
SEARCH DETAIL
...