Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Fish Shellfish Immunol ; 131: 1343-1351, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36216228

ABSTRACT

In the present research, in order to screen out the best candidates from 12 different EOCs, we proposed three in vivo screening methods, namely the screening method of bioluminescence of V. campbellii associated with brine shrimp, regrowth performance of V. campbellii, and immune gene expression of brine shrimp without challenge. Our result showed that challenged with V. campbellii at 107 cells/mL, the survival of the brine shrimp at 48 h was significantly increased after treatment with the EOCs (at 0.0005%, v/v) of 4-allylanisole, R-(+)-limonene, S-(-)-limonene, (-)-terpinen-4-ol, (±)-citronellal, citral, trans-cinnamaldehyde and (+)-carvone, compared to the positive control group. Also, it was observed that the EOCs- of 4-allylanisloe, R-(+)-limonene, S-(-)-limonene, (-)-ß-pinene, geraniol, (±)-citronellal, citral, trans-cinnamaldehyde and (+)-carvone decreased significantly the in vivo bioluminescence of V. campbellii at 36 h after Vibrio exposure. The regrowth assay showed that independently from incubation time (1, 12 or 24 h), no difference was observed in the regrowth curve in all EOC treatment groups compared to the positive control group. The dscam gene expression in the (±)-citronellal group, and the sod gene in the citral group were observed to be significantly higher than in the negative control at 24 h, respectively. However, most of the immune genes were down-regulated in the EOC groups. Combining the survival data at 48 h with the bioluminescence result at 36 h, it was noted that the survival rate of brine shrimp was moderately correlated with in vivo bioluminescence of V. campbellii. The results indicate that the approach of determining in vivo bioluminescence of V. campbellii is a moderately reliable, fastest, and cheapest screening method for EOCs. As the regrowth performance assay of V. campbellii, and the immune genes expression assay of brine shrimp without challenge cannot predict Artemia survival properly, they cannot be used as screening methods for EOCs. Moreover, the immune genes expression assay is relatively slow, time-consuming and costly.


Subject(s)
Oils, Volatile , Vibrio Infections , Vibrio , Animals , Artemia , Limonene/metabolism , Oils, Volatile/pharmacology , Oils, Volatile/metabolism , Vibrio Infections/veterinary , Vibrio/physiology
2.
Front Immunol ; 12: 693932, 2021.
Article in English | MEDLINE | ID: mdl-34745085

ABSTRACT

The halophilic aquatic bacterium Vibrio campbellii is an important aquatic pathogen, capable of causing vibriosis in shrimp and fish resulting in significant economic losses. In a previous work, essential oils (EOs) extracts from Melaleuca alternifolia, Litsea citrata, and Eucalyptus citriodora were found to inhibit the growth of V. campbellii in vitro. This study aimed to determine in vivo EOs' potential protective effect towards gnotobiotic brine shrimp Artemia franciscana, challenged with V. campbellii. The study showed that brine shrimp larvae supplemented with EOs of M. alternifolia (0.0008%) and L. citrata (0.002%) displayed significantly increased survival against V. campbellii. The results indicated that supplementation of these EOs increased the expression of immune-related genes (either in the presence or absence of the pathogen), probably contributing to enhanced protection. Furthermore, in vitro studies indicated that some EOs modulated the expression of virulence factors including swimming motility, biofilm formation, and gelatinase and lipase activity, while flow cytometry data and regrowth assay indicated that these EOs do not exhibit antimicrobial activity as V. campbellii grew at the tested concentrations [M. alternifolia (0.0008%) and L. citrata (0.002%)]. Our findings suggest that EOs extracted from M. alternifolia and L. citrata, can modulate virulence factor production and immunological responses and might hence become part of an intervention strategy to control vibriosis in a fish or shrimp aquaculture setting, a hypothesis that needs to be validated in the future.


Subject(s)
Artemia/microbiology , Oils, Volatile/administration & dosage , Vibrio/pathogenicity , Animals , Germ-Free Life , HSP70 Heat-Shock Proteins/genetics , Oils, Volatile/toxicity , Protein Glutamine gamma Glutamyltransferase 2/genetics , Virulence Factors/biosynthesis
3.
Microorganisms ; 8(12)2020 Dec 08.
Article in English | MEDLINE | ID: mdl-33302532

ABSTRACT

Vibriosis, caused by Vibrio strains, is an important bacterial disease and capable of causing significant high mortality in aquatic animals. Essential oils (EOs) have been considered as an alternative approach for the treatment of aquatic bacterial diseases. In this study, we evaluated the antibacterial activity of essential oils (n = 22) or essential oil components (EOCs, n = 12) against Vibrio strains belonging to the harveyi clade. It was verified by three different approaches, e.g., (i) a bacterial growth assay, comparing Vibrio growth with or without EO(C)s at various concentrations; (ii) a vapor-phase-mediated susceptibility assay, comparing the effect of EO(C)s on bacterial growth through the vapor phase; and (iii) a quorum sensing-inhibitory assay, based on specific inhibition of quorum sensing-regulated bioluminescence. The results showed that, in the bacterial growth assay, EOs of Melaleuca alternifolia and Litsea citrata at 0.0001%, Eucalyptus citriodora at 0.01% can inhibit the growth of Vibrio campbellii BB120. These EOs can also prevent the growth of V. parahaemolyticus strains but need to be present at a higher concentration (0.1%). Moreover, in the vapor-phase-mediated susceptibility assay, EOs of M. alternifolia, L. citrata and E. citriodora can inhibit the growth of V. campbellii BB120 through their vapor phase. However, V. parahaemolyticus strains (CAIM170, LMG2850 and MO904) cannot be inhibited by these EOs. Additionally, in the quorum sensing-inhibitory assay, EOs of Mentha pulegium, Cuminum cyminum, Zingiber officinalis, and E. citriodora, all at 0.001%, have quorum sensing-inhibitory activity in V. campbellii BB120. Taken together, our study provides substantial evidence that usage of the major components, individually or in combination, of the tested commercial EOs (extracted from M. alternifolia, L. citrata, and E. citriodora) could be a promising approach to control V. campbellii BB120.

4.
Nutrition ; 79-80: 110948, 2020.
Article in English | MEDLINE | ID: mdl-32911430

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 causes the potentially fatal coronavirus disease 2019 (COVID-19). Already during the outbreak of the severe acute respiratory syndrome coronavirus 1, the use of vitamin C was suggested. Many patients with severe COVID-19 have elevated levels of the mediators interleukin-6 and endothelin-1. These mediators may explain the age dependence of COVID-19 pneumonia, the preponderance of male and obese or hypertensive patients, as well as of persons of color and smokers. There is clear evidence that vitamin C in high doses can reduce these mediators. Vitamin C is cheap and safe. Hence, using a relatively low dose of vitamin C as prophylaxis, and in cases of severe COVID-19, an (intravenous) high-dose regimen may be beneficial. Ongoing clinical trials are expected to provide more definitive evidence.


Subject(s)
Ascorbic Acid/therapeutic use , COVID-19 Drug Treatment , COVID-19/prevention & control , Vitamins/therapeutic use , Animals , Ascorbic Acid/pharmacology , Coronavirus , Female , Humans , Interleukin-6/metabolism , Male , Pandemics , SARS-CoV-2 , Vitamins/pharmacology
5.
Sci Rep ; 10(1): 2867, 2020 02 18.
Article in English | MEDLINE | ID: mdl-32071337

ABSTRACT

Essential oils (EOs) have been used therapeutically for centuries. In recent decades, randomized controlled (clinical) trials have supported efficacy in specific therapeutic indications for a few of them. Some EOs, their components or derivatives thereof have been approved as drugs. Nevertheless, they are still considered products that are mainly used in complementary and alternative medicine. EO components occupy a special niche in chemical space, that offers unique opportunities based on their unusual physicochemical properties, because they are typically volatile and hydrophobic. Here we evaluate selected physicochemical parameters, used in conventional drug discovery, of EO components present in a range of commercially available EOs. We show that, contrary to generally held belief, most EO components meet current-day requirements of medicinal chemistry for good drug candidates. Moreover, they also offer attractive opportunities for lead optimization or even fragment-based drug discovery. Because their therapeutic potential is still under-scrutinized, we propose that this be explored more vigorously with present-day methods.


Subject(s)
Chemistry, Pharmaceutical/trends , Drug Discovery , Oils, Volatile/therapeutic use , Humans , Oils, Volatile/chemistry
6.
Sci Rep ; 8(1): 3958, 2018 03 02.
Article in English | MEDLINE | ID: mdl-29500393

ABSTRACT

Multi-resistant microorganisms continue to challenge medicine and fuel the search for new antimicrobials. Here we show that essential oils and their components are a promising class of antifungals that can have specific anti-Candida activity via their vapour-phase. We quantify the vapour-phase-mediated antimicrobial activity (VMAA) of 175 essential oils and 37 essential oil components, representing more than a 1,000 unique molecules, against C. albicans and C. glabrata in a novel vapour-phase-mediated susceptibility assay. Approximately half of the tested essential oils and their components show growth-inhibitory VMAA. Moreover, an average greater activity was observed against the intrinsically more resistant C. glabrata, with essential oil component citronellal having a highly significant differential VMAA. In contrast, representatives of each class of antifungals currently used in clinical practice showed no VMAA. The vapour-phase-mediated susceptibility assay presented here thus allows for the simple detection of VMAA and can advance the search for novel (applications of existing) antimicrobials. This study represents the first comprehensive characterisation of essential oils and their components as a unique class of antifungals with antimicrobial properties that differentiate them from existing antifungal classes.


Subject(s)
Antifungal Agents/pharmacology , Candida albicans/drug effects , Candida glabrata/drug effects , Gases , Oils, Volatile/pharmacology , Gas Chromatography-Mass Spectrometry/methods , Microbial Sensitivity Tests , Oils, Volatile/chemistry , Proof of Concept Study , Solid Phase Microextraction/methods , Volatilization
SELECTION OF CITATIONS
SEARCH DETAIL
...