Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Entropy (Basel) ; 24(12)2022 Nov 29.
Article in English | MEDLINE | ID: mdl-36554146

ABSTRACT

A coherent feedback scheme is used to enhance the degree of squeezing of the output field in a cavity optomechanical system. In the feedback loop, a beam splitter (BS) plays the roles of both a feedback controller and an input-output port. To realize effective enhancement, the output quadrature should take the same form as the input quadrature, and the system should operate at the deamplification situation in the meantime. This can be realized by choosing an appropriate frequency-dependent phase angle for the generalized quadrature. Additionally, both the transmissivity of the BS and the phase factor induced by time delays in the loop affect optical squeezing. For the fixed frequency, the optimal values of transmissivity and phase factor can be used to achieve the enhanced optical squeezing. The effect of optical losses on squeezing is also discussed. Optical squeezing is degraded by the introduced vacuum noise owing to the inefficient transmission in the loop. We show that the enhancement of squeezing is achievable with the parameters of the current experiments.

2.
Entropy (Basel) ; 24(5)2022 May 13.
Article in English | MEDLINE | ID: mdl-35626575

ABSTRACT

Interesting coherence and correlations appear between superpositions of two bosonic modes when the modes are parametrically coupled to a third intermediate mode and are also coupled to external modes which are in thermal states of unequal mean photon numbers. Under such conditions, it is found that one of linear superpositions of the modes, which is effectively decoupled from the other modes, can be perfectly coherent with the other orthogonal superposition of the modes and can simultaneously exhibit anticoherence with the intermediate mode, which can give rise to entanglement between the modes. It is shown that the coherence effects have a substantial effect on the population distribution between the modes, which may result in lowering the population of the intermediate mode. This shows that the system can be employed to cool modes to lower temperatures. Furthermore, for appropriate thermal photon numbers and coupling strengths between the modes, it is found that entanglement between the directly coupled superposition and the intermediate modes may occur in a less restricted range of the number of the thermal photons such that the modes could be strongly entangled, even at large numbers of the thermal photons.

3.
Sci Rep ; 8(1): 14740, 2018 Oct 03.
Article in English | MEDLINE | ID: mdl-30283020

ABSTRACT

We describe how an ensemble of four-level atoms in the diamond-type configuration can be applied to create a fully controllable effective coupling between two cavity modes. The diamond-type configuration allows one to use a bimodal cavity that supports modes of different frequencies or different circular polarisations, because each mode is coupled only to its own transition. This system can be used for mapping a quantum state of one cavity mode onto the other mode on demand. Additionally, it can serve as a fast opening high-Q cavity system that can be easily and coherently controlled with laser fields.

4.
Opt Express ; 25(3): 1867-1888, 2017 Feb 06.
Article in English | MEDLINE | ID: mdl-29519039

ABSTRACT

We study the dynamics of two two-level atoms embedded near to the interface of paired meta-material slabs, one of negative permeability and the other of negative permittivity. This combination generates a strong surface plasmon field at the interface between the meta-materials. It is found that the symmetric and antisymmetric modes of the two-atom system couple to the plasmonic field with different Rabi frequencies. Including the Ohmic losses of the materials we find that the Rabi frequencies exhibit threshold behaviour which distinguish between the non-Markovian (memory preserving) and Markovian (memoryless) regimes of the evolution. Moreover, it is found that significantly different dynamics occur for the resonant and an off-resonant couplings of the plasmon field to the atoms. In the case of the resonant coupling, the field does not appear as a dissipative reservoir to the atoms. We adopt the image method and show that the dynamics of the two atoms coupled to the plasmon field are analogous to the dynamics of a four-atom system in a rectangular configuration. A large and long living entanglement mediated by the plasmonic field in both Markovian and non-Markovian regimes of the evolution is predicted. We also show that a simultaneous Markovian and non-Markovian regime of the evolution may occur in which the memory effects exist over a finite evolution time. In the case of an off-resonant coupling of the atoms to the plasmon field, the atoms interact with each other by exchanging virtual photons which results in the dynamics corresponding to those of two atoms coupled to a common reservoir. In addition, the entanglement is significantly enhanced.

SELECTION OF CITATIONS
SEARCH DETAIL
...