Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 119(16): e2120975119, 2022 04 19.
Article in English | MEDLINE | ID: mdl-35412916

ABSTRACT

Biological soil crusts (biocrusts), comprised of mosses, lichens, and cyanobacteria, are key components to many dryland communities. Climate change and other anthropogenic disturbances are thought to cause a decline in mosses and lichens, yet few long-term studies exist to track potential shifts in these sensitive soil-surface communities. Using a unique long-term observational dataset from a temperate dryland with initial observations dating back to 1967, we examine the effects of 53 y of observed environmental variation and Bromus tectorum invasion on biocrust communities in a grassland never grazed by domestic livestock. Annual observations show a steep decline in N-fixing lichen cover (dominated by Collema species) from 1996 to 2002, coinciding with a period of extended drought, with Collema communities never able to recover. Declines in other lichen species were also observed, both in number of species present and by total cover, which were attributed to increasing summertime temperatures. Conversely, moss species gradually gained in cover over the survey years, especially following a large Bromus tectorum invasion at the study onset (ca. 1996 to 2001). These results support a growing body of studies that suggests climate change is a key driver in changes to certain components of late-successional biocrust communities. Results here suggest that warming may partially negate decades of protection from disturbance, with biocrust communities reaching a vital tipping point. The accelerated rate of ongoing warming observed in this study may have resulted in the loss of lichen cover and diversity, which could have long-term implications for global temperate dryland ecosystems.


Subject(s)
Ascomycota , Global Warming , Lichens , Soil Microbiology , Bromus , Bryophyta , Droughts , Ecosystem , Introduced Species , Nitrogen Fixation , Seasons , Temperature
2.
Nat Ecol Evol ; 5(9): 1283-1290, 2021 09.
Article in English | MEDLINE | ID: mdl-34294898

ABSTRACT

Restoration of degraded drylands is urgently needed to mitigate climate change, reverse desertification and secure livelihoods for the two billion people who live in these areas. Bold global targets have been set for dryland restoration to restore millions of hectares of degraded land. These targets have been questioned as overly ambitious, but without a global evaluation of successes and failures it is impossible to gauge feasibility. Here we examine restoration seeding outcomes across 174 sites on six continents, encompassing 594,065 observations of 671 plant species. Our findings suggest reasons for optimism. Seeding had a positive impact on species presence: in almost a third of all treatments, 100% of species seeded were growing at first monitoring. However, dryland restoration is risky: 17% of projects failed, with no establishment of any seeded species, and consistent declines were found in seeded species as projects matured. Across projects, higher seeding rates and larger seed sizes resulted in a greater probability of recruitment, with further influences on species success including site aridity, taxonomic identity and species life form. Our findings suggest that investigations examining these predictive factors will yield more effective and informed restoration decision-making.


Subject(s)
Ecosystem , Seedlings , Climate Change , Humans , Plants , Seeds
4.
Ecol Appl ; 31(3): e02264, 2021 04.
Article in English | MEDLINE | ID: mdl-33220145

ABSTRACT

Many important ecological phenomena occur on large spatial scales and/or are unplanned and thus do not easily fit within analytical frameworks that rely on randomization, replication, and interspersed a priori controls for statistical comparison. Analyses of such large-scale, natural experiments are common in the health and econometrics literature, where techniques have been developed to derive insight from large, noisy observational data sets. Here, we apply a technique from this literature, synthetic control, to assess landscape change with remote sensing data. The basic data requirements for synthetic control include (1) a discrete set of treated and untreated units, (2) a known date of treatment intervention, and (3) time series response data that include both pre- and post-treatment outcomes for all units. Synthetic control generates a response metric for treated units relative to a no-action alternative based on prior relationships between treated and unexposed groups. Using simulations and a case study involving a large-scale brush-clearing management event, we show how synthetic control can intuitively infer treatment effect sizes from satellite data, even in the presence of confounding noise from climate anomalies, long-term vegetation dynamics, or sensor errors. We find that accuracy depends on the number and quality of potential control units, highlighting the importance of selecting appropriate control populations. Although we consider the synthetic control approach in the context of natural experiments with remote sensing data, we expect the methodology to have wider utility in ecology, particularly for systems with large, complex, and poorly replicated experimental units.


Subject(s)
Climate , Remote Sensing Technology
5.
Heliyon ; 6(5): e03829, 2020 May.
Article in English | MEDLINE | ID: mdl-32426532

ABSTRACT

Improving female empowerment is an important human rights and development goal that needs better monitoring. A number of indices have been developed to track female empowerment at the national level, but these are incomplete and may obscure important sub-national variation. We developed the Female Empowerment Index (FEMI) to track multiple domains of women's empowerment at the sub-national level. The index is based on six categories of empowerment: violence against women, employment, education, reproductive healthcare, decision making, and access to contraceptives. The FEMI has a range of zero to one (low to high empowerment), and it is calculated as the mean proportion of positive outcomes in the six categories. To provide a proof of concept, we computed the FEMI for Nigeria and its 36 states from five Demographic and Health Surveys between the years of 1990 and 2013, using questions asked to 98,542 women between 15 and 49 years old. At the national level, the FEMI increased from 0.34 to 0.48. However, there was substantial sub-national variation, with state-level values ranging from 0.16-0.60 in 1990 to 0.19-0.73 in 2013. Our findings thus illustrate the importance of considering sub-national variation in female empowerment. The FEMI can be readily computed for other countries, and its ability to track spatial and temporal variation in woman's empowerment across a broad set of categories may make it more useful than existing approaches.

6.
Ecol Lett ; 23(3): 483-494, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31922344

ABSTRACT

A 'resilient' forest endures disturbance and is likely to persist. Resilience to wildfire may arise from feedback between fire behaviour and forest structure in dry forest systems. Frequent fire creates fine-scale variability in forest structure, which may then interrupt fuel continuity and prevent future fires from killing overstorey trees. Testing the generality and scale of this phenomenon is challenging for vast, long-lived forest ecosystems. We quantify forest structural variability and fire severity across >30 years and >1000 wildfires in California's Sierra Nevada. We find that greater variability in forest structure increases resilience by reducing rates of fire-induced tree mortality and that the scale of this effect is local, manifesting at the smallest spatial extent of forest structure tested (90 × 90 m). Resilience of these forests is likely compromised by structural homogenisation from a century of fire suppression, but could be restored with management that increases forest structural variability.


Subject(s)
Fires , Tracheophyta , Wildfires , California , Ecosystem , Forests , Trees
7.
PLoS One ; 13(4): e0194315, 2018.
Article in English | MEDLINE | ID: mdl-29617400

ABSTRACT

Historical reconstructions of plant community distributions are useful for biogeographic studies and restoration planning, but the quality of insights gained depends on the depth and reliability of historical information available. For the Central Valley of California, one of the most altered terrestrial ecosystems on the planet, this task is particularly difficult given poor historical documentation and sparse relict assemblages of pre-invasion plant species. Coastal and interior prairies were long assumed to have been dominated by perennial bunchgrasses, but this hypothesis has recently been challenged. We evaluated this hypothesis by creating species distribution models (SDMs) using a novel approach based on the abundance of soil phytoliths (microscopic particles of biogenic silica used as a proxy for long-term grass presence) extracted from soil samples at locations statewide. Modeled historical grass abundance was consistently high along the coast and to a lesser extent in higher elevation foothills surrounding the Central Valley. SDMs found strong associations with mean temperature, temperature variability, and precipitation variability, with higher predicted abundance in regions with cooler, equable temperatures and moderated rainfall, mirroring the pattern for modern perennial grass distribution across the state. The results of this study strongly suggest that the pre-Columbian Central Valley of California was not dominated by grasses. Using soil phytolith data as input for SDMs is a promising new method for predicting the extent of prehistoric grass distributions where alternative historical datasets are lacking.


Subject(s)
Conservation of Natural Resources , Ecosystem , Grassland , California , Ecology , Introduced Species , Poaceae , Soil
8.
AoB Plants ; 72015 May 22.
Article in English | MEDLINE | ID: mdl-26002746

ABSTRACT

Plant communities in abiotically stressful, or 'harsh', habitats have been reported to be less invaded by non-native species than those in more moderate habitats. Here, we synthesize descriptive and experimental evidence for low levels of invasion in habitats characterized by a variety of environmental stressors: low nitrogen; low phosphorus; saline, sodic or alkaline soils; serpentine soils; low soil moisture; shallow/rocky soils; temporary inundation; high shade; high elevation; and high latitude. We then discuss major categories of hypotheses to explain this pattern: the propagule limitation mechanism suggests invasion of harsh sites is limited by relatively low arrival rates of propagules compared with more moderate habitats, while invasion resistance mechanisms suggest that harsh habitats are inherently less invasible due to stressful abiotic conditions and/or increased effects of biotic resistance from resident organisms. Both propagule limitation and invasion resistance may simultaneously contribute to low invadedness of harsh sites, but the management implications of these mechanisms differ. If propagule limitation is more important, managers should focus on reducing the likelihood of propagule introductions. If invasion resistance mechanisms are in play, managers should focus on restoring or maintaining harsh conditions at a site to reduce invasibility.

9.
AoB Plants ; 72014 Dec 05.
Article in English | MEDLINE | ID: mdl-25480888

ABSTRACT

Ecological communities are increasingly being recognized as the products of contemporary drivers and historical legacies that are both biotic and abiotic. In an attempt to unravel multiple layers of ecological contingency, we manipulated (i) competition with exotic annual grasses, (ii) the timing of this competition (temporal priority in arrival/seeding times) and (iii) watering (simulated rainfall) in a restoration-style planting of native perennial grasses. In addition, we replicated this experiment simultaneously at three sites in north-central California. Native perennial grasses had 73-99 % less cover when planted with exotic annuals than when planted alone, but this reduction was greatly ameliorated by planting the natives 2 weeks prior to the exotics. In a drought year, irrigation significantly reduced benefits of early planting so that these benefits resembled those observed in a non-drought year. There were significant differences across the three sites (site effects and interactions) in (i) overall native cover, (ii) the response of natives to competition, (iii) the strength of the temporal priority effect and (iv) the degree to which supplemental watering reduced priority effects. These results reveal the strong multi-layered contingency that underlies even relatively simple communities.

SELECTION OF CITATIONS
SEARCH DETAIL
...