Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
Add more filters










Publication year range
1.
J Inorg Biochem ; 256: 112565, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38677005

ABSTRACT

Two conserved second-sphere ßArg (R) residues in nitrile hydratases (NHase), that form hydrogen bonds with the catalytically essential sulfenic and sulfinic acid ligands, were mutated to Lys and Ala residues in the Co-type NHase from Pseudonocardia thermophila JCM 3095 (PtNHase) and the Fe-type NHase from Rhodococcus equi TG328-2 (ReNHase). Only five of the eight mutants (PtNHase ßR52A, ßR52K, ßR157A, ßR157K and ReNHase ßR61A) were successfully expressed and purified. Apart from the PtNHase ßR52A mutant that exhibited no detectable activity, the kcat values obtained for the PtNHase and ReNHase ßR mutant enzymes were between 1.8 and 12.4 s-1 amounting to <1% of the kcat values observed for WT enzymes. The metal content of each mutant was also significantly decreased with occupancies ranging from ∼10 to ∼40%. UV-Vis spectra coupled with EPR data obtained on the ReNHase mutant enzyme, suggest a decrease in the Lewis acidity of the active site metal ion. X-ray crystal structures of the four PtNHase ßR mutant enzymes confirmed the mutation and the low active site metal content, while also providing insight into the active site hydrogen bonding network. Finally, DFT calculations suggest that the equatorial sulfenic acid ligand, which has been shown to be the catalytic nucleophile, is protonated in the mutant enzyme. Taken together, these data confirm the necessity of the conserved second-sphere ßR residues in the proposed subunit swapping process and post-translational modification of the α-subunit in the α activator complex, along with stabilizing the catalytic sulfenic acid in its anionic form.


Subject(s)
Arginine , Hydro-Lyases , Hydro-Lyases/chemistry , Hydro-Lyases/metabolism , Hydro-Lyases/genetics , Arginine/chemistry , Rhodococcus equi/enzymology , Rhodococcus equi/genetics , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Actinomycetales/enzymology , Actinomycetales/genetics , Catalytic Domain
2.
Nat Chem ; 16(4): 481-482, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38548885
3.
Inorg Chem ; 62(15): 5984-6002, 2023 Apr 17.
Article in English | MEDLINE | ID: mdl-37000941

ABSTRACT

The observation of single-molecule magnetism in transition-metal complexes relies on the phenomenon of zero-field splitting (ZFS), which arises from the interplay of spin-orbit coupling (SOC) with ligand-field-induced symmetry lowering. Previous studies have demonstrated that the magnitude of ZFS in complexes with 3d metal ions is sometimes enhanced through coordination with heavy halide ligands (Br and I) that possess large free-atom SOC constants. In this study, we systematically probe this "heavy-atom effect" in high-spin cobalt(II)-halide complexes supported by substituted hydrotris(pyrazol-1-yl)borate ligands (TptBu,Me and TpPh,Me). Two series of complexes were prepared: [CoIIX(TptBu,Me)] (1-X; X = F, Cl, Br, and I) and [CoIIX(TpPh,Me)(HpzPh,Me)] (2-X; X = Cl, Br, and I), where HpzPh,Me is a monodentate pyrazole ligand. Examination with dc magnetometry, high-frequency and -field electron paramagnetic resonance, and far-infrared magnetic spectroscopy yielded axial (D) and rhombic (E) ZFS parameters for each complex. With the exception of 1-F, complexes in the four-coordinate 1-X series exhibit positive D-values between 10 and 13 cm-1, with no dependence on halide size. The five-coordinate 2-X series exhibit large and negative D-values between -60 and -90 cm-1. Interpretation of the magnetic parameters with the aid of ligand-field theory and ab initio calculations elucidated the roles of molecular geometry, ligand-field effects, and metal-ligand covalency in controlling the magnitude of ZFS in cobalt-halide complexes.

4.
Inorg Chem ; 61(42): 16664-16677, 2022 Oct 24.
Article in English | MEDLINE | ID: mdl-36206536

ABSTRACT

A series of mononuclear Co(II) complexes with noninnocent (redox-active) ligands are prepared that exhibit metal-ligand cooperativity during the reversible binding of O2. The complexes have the general formula, [CoII(LS,N)(TpR2)] (R = Me, Ph), where LS,N is a bidentate o-aminothiophenolate and TpR2 is a hydrotris(pyrazol-1-yl)borate scorpionate with R-substituents at the 3- and 5-positions. Exposure to O2 at room temperature results in one-electron oxidation and deprotonation of LS,N. The oxidized derivatives possess substantial "singlet diradical" character arising from antiferromagnetic coupling between an iminothiosemiquinonate (ITSQ•-) ligand radical and a low-spin Co(II) ion. The [CoII(TpMe2)(X2ITSQ)] complexes, where X = H or tBu, coordinate O2 reversibly at reduced temperatures to provide Co/O2 adducts. The O2 binding reactions closely resemble those previously reported by our group (Kumar et al., J. Am. Chem. Soc. 2019,141, 10984-10987) for the related complexes [CoII(TpMe2)(tBu2SQ)] and [CoII(TpMe2)(tBu2ISQ)], where tBu2(I)SQ represents 4,6-di-tert-butyl-(2-imino)semiquinonate radicals. In each case, the oxygenation reaction proceeds via the addition of O2 to both the cobalt ion and the ligand radical, generating metallocyclic cobalt(III)-alkylperoxo structures. Thermodynamic measurements elucidate the relationship between O2 affinity and redox potentials of the (imino)(thio)semiquinonate radicals, as well as energetic differences between these reactions and conventional metal-based oxygenations. The results highlight the utility and versatility of noninnocent ligands in the design of O2-absorbing compounds.

5.
Biochemistry ; 60(49): 3771-3782, 2021 12 14.
Article in English | MEDLINE | ID: mdl-34843221

ABSTRACT

A new method to trap catalytic intermediate species was employed with Fe-type nitrile hydratase from Rhodococcus equi TG328-2 (ReNHase). ReNHase was incubated with substrates in a 23% (w/w) NaCl/H2O eutectic system that remained liquid at -20 °C, thereby permitting the observation of transient species that were present at electron paramagnetic resonance (EPR)-detectable levels in samples frozen while in the steady state. FeIII-EPR signals from the resting enzyme were unaffected by the presence of 23% NaCl, and the catalytic activity was ∼55% that in the absence of NaCl at the optimum pH of 7.5. The reaction of ReNHase in the eutectic system at -20 °C with the substrates acetonitrile or benzonitrile induced significant changes in the EPR spectra. A previously unobserved signal with highly rhombic g-values (g1 = 2.31) was observed during the steady state but did not persist beyond the exhaustion of the substrate, indicating that it arises from a catalytically competent intermediate. Distinct signals due to product complexes provide a detailed mechanism for product release, the rate-limiting step of the reaction. Assignment of the observed EPR signals was facilitated by density functional theory calculations, which provided candidate structures and g-values for various proposed ReNHase intermediates. Collectively, these results provide new insights into the catalytic mechanism of NHase and offer a new approach for isolating and characterizing EPR-active intermediates in metalloenzymes.


Subject(s)
Acetonitriles/chemistry , Bacterial Proteins/chemistry , Hydro-Lyases/chemistry , Iron/chemistry , Nitriles/chemistry , Rhodococcus equi/chemistry , Acetonitriles/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Biocatalysis , Catalytic Domain , Cold Temperature , Deep Eutectic Solvents/chemistry , Density Functional Theory , Electron Spin Resonance Spectroscopy , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Hydro-Lyases/genetics , Hydro-Lyases/metabolism , Hydrogen-Ion Concentration , Iron/metabolism , Kinetics , Nitriles/metabolism , Protein Subunits/chemistry , Protein Subunits/genetics , Protein Subunits/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Rhodococcus equi/enzymology , Sodium Chloride/chemistry , Substrate Specificity , Water/chemistry
6.
Dalton Trans ; 50(40): 14432-14443, 2021 Oct 19.
Article in English | MEDLINE | ID: mdl-34570147

ABSTRACT

The activation of O2 at thiolate-ligated iron(II) sites is essential to the function of numerous metalloenzymes and synthetic catalysts. Iron-thiolate bonds in the active sites of nonheme iron enzymes arise from either coordination of an endogenous cysteinate residue or binding of a deprotonated thiol-containing substrate. Examples of the latter include sulfoxide synthases, such as EgtB and OvoA, that utilize O2 to catalyze tandem S-C bond formation and S-oxygenation steps in thiohistidine biosyntheses. We recently reported the preparation of two mononuclear nonheme iron-thiolate complexes (1 and 2) that serve as structural active-site models of substrate-bound EgtB and OvoA (Dalton Trans. 2020, 49, 17745-17757). These models feature monodentate thiolate ligands and tripodal N4 ligands with mixed pyridyl/imidazolyl donors. Here, we describe the reactivity of 1 and 2 with O2 at low temperatures to give metastable intermediates (3 and 4, respectively). Characterization with multiple spectroscopic techniques (UV-vis absorption, NMR, variable-field and -temperature Mössbauer, and resonance Raman) revealed that these intermediates are thiolate-ligated iron(III) dimers with a bridging oxo ligand derived from the four-electron reduction of O2. Structural models of 3 and 4 consistent with the experimental data were generated via density functional theory (DFT) calculations. The combined experimental and computational results illuminate the geometric and electronic origins of the unique spectral features of diiron(III)-µ-oxo complexes with thiolate ligands, and the spectroscopic signatures of 3 and 4 are compared to those of closely-related diiron(III)-µ-peroxo species. Collectively, these results will assist in the identification of intermediates that appear on the O2 reaction landscapes of iron-thiolate species in both biological and synthetic environments.


Subject(s)
Ferric Compounds/chemical synthesis , Ferrous Compounds/chemistry , Oxygen/chemistry , Sulfhydryl Compounds/chemistry , Density Functional Theory , Electrons , Ferric Compounds/chemistry , Spectrum Analysis, Raman
7.
Dalton Trans ; 49(48): 17745-17757, 2020 Dec 22.
Article in English | MEDLINE | ID: mdl-33241840

ABSTRACT

Two mononuclear iron(ii)-thiolate complexes have been prepared that represent structural models of the nonheme iron enzymes EgtB and OvoA, which catalyze the O2-dependent formation of carbon-sulfur bonds in the biosynthesis of thiohistidine compounds. The series of Fe(ii) complexes reported here feature tripodal N4 chelates (LA and LB) that contain both pyridyl and imidazolyl donors (LA = (1H-imidazol-4-yl)-N,N-bis((pyridin-2-yl)methyl)methanamine; LB = N,N-bis((1-methylimidazol-2-yl)methyl)-2-pyridylmethylamine). Further coordination with monodentate aromatic or aliphatic thiolate ligands yielded the five-coordinate, high-spin Fe(ii) complexes [FeII(LA)(SMes)]BPh4 (1) and [FeII(LB)(SCy)]BPh4 (2), where SMes = 2,4,6-trimethylthiophenolate and SCy = cyclohexanethiolate. X-ray crystal structures revealed that 1 and 2 possess trigonal bipyramidal geometries formed by the N4S ligand set. In each case, the thiolate ligand is positioned cis to an imidazole donor, replicating the arrangement of Cys- and His-based substrates in the active site of EgtB. The geometric and electronic structures of 1 and 2 were analyzed with UV-vis absorption and Mössbauer spectroscopies in tandem with density functional theory (DFT) calculations. Exposure of 1 and 2 to nitric oxide (NO) yielded six-coordinate FeNO adducts that were characterized with infrared and electron paramagnetic resonance (EPR) spectroscopies, confirming that these complexes are capable of binding diatomic molecules. Reaction of 1 and 2 with O2 causes oxidation of the thiolate ligands to disulfide products. The implications of these results for the development of functional models of EgtB and OvoA are discussed.


Subject(s)
Ferrous Compounds/pharmacology , Nonheme Iron Proteins/metabolism , Oxidoreductases/metabolism , Sulfhydryl Compounds/pharmacology , Catalytic Domain/drug effects , Crystallography, X-Ray , Density Functional Theory , Ferrous Compounds/chemical synthesis , Ferrous Compounds/chemistry , Models, Molecular , Molecular Structure , Mycobacteriaceae/enzymology , Sulfhydryl Compounds/chemistry
8.
Inorg Chem ; 59(22): 16178-16193, 2020 Nov 16.
Article in English | MEDLINE | ID: mdl-33141572

ABSTRACT

Coordination complexes that possess large magnetic anisotropy (otherwise known as zero-field splitting, ZFS) have possible applications in the field of magnetic materials, including single molecule magnets (SMMs). Previous studies have explored the role of coordination number and geometry in controlling the magnetic anisotropy and SMM behavior of high-spin (S = 3/2) Co(II) complexes. Building upon these efforts, the present work examines the impact of ligand oxidation state and structural distortions on the spin states and ZFS parameters of pentacoordinate Co(II) complexes. The five complexes included in this study (1-5) have the general formula, [Co(TpPh2)(LX,Y)]n+ (X = O, S; Y = N, O; n = 0 or 1), where TpPh2 is the scorpionate ligand hydrotris(3,5-diphenyl-pyrazolyl)borate(1-) and LX,Y are bidentate dioxolene-type ligands that can access multiple oxidation states. The specific LX,Y ligands used herein are 4,6-di-tert-butyl substituted o-aminophenolate and o-aminothiophenolate (1 and 2, respectively), o-iminosemiquinonate and o-semiquinonate radicals (3 and 4, respectively), and o-iminobenzoquinone (5). Each complex exhibits a distorted trigonal bipyramidal geometry, as revealed by single-crystal X-ray diffraction. Direct current (dc) magnetic susceptibility experiments confirmed that the complexes with closed-shell ligands (1, 2, and 5) possess S = 3/2 ground states with negative D-values (easy-axis anisotropy) of -41, -78, and -30 cm-1, respectively. For 3 and 4, antiferromagnetic coupling between the Co(II) center and o-(imino)semiquinonate radical ligand results in S = 1 ground states that likewise exhibit very large and negative anisotropy (-100 > D > -140 cm-1). Notably, ZFS was measured directly for each complex using far-infrared magnetic spectroscopy (FIRMS). In combination with high-frequency and -field electron paramagnetic resonance (HFEPR) studies, these techniques provided precise spin-Hamiltonian parameters for complexes 1, 2, and 5. Multireference ab initio calculations, using the CASSCF/NEVPT2 approach, indicate that the strongly negative anisotropies of these Co(II) complexes arise primarily from distortions in the equatorial plane due to constrictions imposed by the TpPh2 ligand. This effect is further amplified by cobalt(II)-radical exchange interactions in 3 and 4.

9.
Inorg Chem ; 58(24): 16487-16499, 2019 Dec 16.
Article in English | MEDLINE | ID: mdl-31789510

ABSTRACT

Parallel spectroscopic and computational studies of iron(III) cysteine dioxygenase (CDO) and synthetic models are presented. The synthetic complexes utilize the ligand tris(4,5-diphenyl-1-methylimidazol-2-yl)phosphine (Ph2TIP), which mimics the facial three-histidine triad of CDO and other thiol dioxygenases. In addition to the previously reported [FeII(CysOEt)(Ph2TIP)]BPh4 (1; CysOEt is the ethyl ester of anionic l-cysteine), the formation and crystallographic characterization of [FeII(2-MTS)(Ph2TIP)]BPh4 (2) is reported, where the methyl 2-thiosalicylate anion (2-MTS) resembles the substrate of 3-mercaptopropionate dioxygenase (MDO). One-electron chemical oxidation of 1 and 2 yields ferric species that bind cyanide and azide anions, which have been used as spectroscopic probes of O2 binding in prior studies of FeIII-CDO. The six-coordinate FeIII-CN and FeIII-N3 adducts are examined with UV-vis absorption, electron paramagnetic resonance (EPR), and resonance Raman (rRaman) spectroscopies. In addition, UV-vis and rRaman studies of cysteine- and cyanide-bound FeIII-CDO are reported for both the wild-type (WT) enzyme and C93G variant, which lacks the Cys-Tyr cross-link that is present in the second coordination sphere of the WT active site. Density functional theory (DFT) and ab initio calculations are employed to provide geometric and electronic structure descriptions of the synthetic and enzymatic FeIII adducts. In particular, it is shown that the complete active space self-consistent field (CASSCF) method, in tandem with n-electron valence state second-order perturbation theory (NEVPT2), is capable of elucidating the structural basis of subtle shifts in EPR g values for low-spin FeIII species.

10.
J Am Chem Soc ; 141(28): 10984-10987, 2019 07 17.
Article in English | MEDLINE | ID: mdl-31251607

ABSTRACT

The syntheses and O2 reactivities of active-site models of cobalt-substituted ring-cleaving dioxygenases are presented. The pentacoordinate cobalt(II)-aminophenolate complex, [Co(TpMe2)(tBu2APH)], gives rise to two distinct dioxygen adducts at reduced temperatures. The first is a paramagnetic (S = 1/2) cobalt(III)-superoxo species that was characterized with spectroscopic and computational techniques. The identity of the second Co/O2 adduct was elucidated by X-ray crystallography, which revealed an unprecedented cobalt(III)-alkylperoxo structure generated by O2 addition to the metal ion and ligand. These results provide synthetic precedents for proposed intermediates in the catalytic cycles of O2-activating cobalt enzymes.


Subject(s)
Cobalt/metabolism , Coordination Complexes/metabolism , Dioxygenases/metabolism , Oxygen/metabolism , Peroxides/metabolism , Superoxides/metabolism , Cobalt/chemistry , Coordination Complexes/chemistry , Crystallography, X-Ray , Dioxygenases/chemistry , Models, Molecular , Molecular Structure , Oxygen/chemistry , Peroxides/chemistry , Superoxides/chemistry
11.
Chem Commun (Camb) ; 54(80): 11344-11347, 2018 Oct 14.
Article in English | MEDLINE | ID: mdl-30246208

ABSTRACT

A nonheme Fe(ii) complex (1) that models substrate-bound cysteine dioxygenase (CDO) reacts with O2 at -80 °C to yield a purple intermediate (2). Analysis with spectroscopic and computational methods determined that 2 features a thiolate-ligated Fe(iii) center bound to a superoxide radical, mimicking the putative structure of a key CDO intermediate.


Subject(s)
Cysteine Dioxygenase/metabolism , Ferrous Compounds/metabolism , Models, Biological , Superoxides/metabolism , Cysteine Dioxygenase/chemistry , Ferrous Compounds/chemistry , Heme , Humans , Oxygen/chemistry , Oxygen/metabolism , Superoxides/chemistry
12.
Dalton Trans ; 46(39): 13229-13241, 2017 Oct 10.
Article in English | MEDLINE | ID: mdl-28686274

ABSTRACT

The substitution of non-native metal ions into metalloenzyme active sites is a common strategy for gaining insights into enzymatic structure and function. For some nonheme iron dioxygenases, replacement of the Fe(ii) center with a redox-active, divalent transition metal (e.g., Mn, Co, Ni, Cu) gives rise to an enzyme with equal or greater activity than the wild-type enzyme. In this manuscript, we apply this metal-substitution approach to synthetic models of the enzyme cysteine dioxygenase (CDO). CDO is a nonheme iron dioxygenase that initiates the catabolism of l-cysteine by converting this amino acid to the corresponding sulfinic acid. Two mononuclear Co(ii) complexes (3 and 4) have been prepared with the general formula [Co2+(TpR2)(CysOEt)] (R = Ph (3) or Me (4); TpR2 = hydrotris(pyrazol-1-yl)borate substituted with R-groups at the 3- and 5-positions, and CysOEt is the anion of l-cysteine ethyl ester). These Co(ii) complexes mimic the active-site structure of substrate-bound CDO and are analogous to functional iron-based CDO models previously reported in the literature. Characterization with X-ray crystallography and/or 1H NMR spectroscopy revealed that 3 and 4 possess five-coordinate structures featuring facially-coordinating TpR2 and S,N-bidentate CysOEt ligands. The electronic properties of these high-spin (S = 3/2) complexes were interrogated with UV-visible absorption and X-band electron paramagnetic resonance (EPR) spectroscopies. The air-stable nature of complex 3 replicates the inactivity of cobalt-substituted CDO. In contrast, complex 4 reversibly binds O2 at reduced temperatures to yield an orange chromophore (4-O2). Spectroscopic (EPR, resonance Raman) and computational (density functional theory, DFT) analyses indicate that 4-O2 is a S = 1/2 species featuring a low-spin Co(iii) center bound to an end-on (η1) superoxo ligand. DFT calculations were used to evaluate the energetics of key steps in the reaction mechanism. Collectively, these results have elucidated the role of electronic factors (e.g., spin-state, d-electron count, metal-ligand covalency) in facilitating O2 activation and S-dioxygenation in CDO and related models.


Subject(s)
Cobalt/chemistry , Coordination Complexes/chemistry , Oxygen/metabolism , Catalysis , Catalytic Domain , Coordination Complexes/metabolism , Crystallography, X-Ray , Cysteine Dioxygenase/chemistry , Cysteine Dioxygenase/metabolism , Electrochemical Techniques , Electron Spin Resonance Spectroscopy , Ligands , Magnetic Resonance Spectroscopy , Molecular Conformation , Oxygen/chemistry , Quantum Theory , Spectrophotometry , Thermodynamics
13.
Chemistry ; 23(39): 9272-9279, 2017 Jul 12.
Article in English | MEDLINE | ID: mdl-28488285

ABSTRACT

The bimetallic catalyst [CoII2 (L1 )(bpy)2 ]ClO4 (1), in which L1 is an [NN'2 O2 ] fused ligand, efficiently reduced H+ to H2 in CH3 CN in the presence of 100 equiv of HOAc with a turnover number of 18 and a Faradaic efficiency of 94 % after 3 h of bulk electrolysis at -1.6 V (vs. Ag/AgCl). This observation allowed the proposal that this bimetallic cooperativity is associated with distance, angle, and orbital alignment of the two Co centers, as promoted by the unique Co-Namido -Co environment offered by L1 . Experimental results revealed that the parent [CoII CoII ] complex undergoes two successive metal-based 1 e- reductions to generate the catalytically active species [CoI CoI ], and DFT calculations suggested that addition of a proton to one CoI triggers a cooperative 1 e- transfer by each of these CoI centers. This 2 e- transfer is an alternative route to generate a more reactive [CoII (CoII -H- )] hydride, thus avoiding the CoIII -H- required in monometallic species. This [CoII (CoII -H- )] species then accepts another H+ to release H2 .

14.
Biochemistry ; 56(24): 3068-3077, 2017 06 20.
Article in English | MEDLINE | ID: mdl-28520398

ABSTRACT

Iron-type nitrile hydratases (NHases) contain an Fe(III) ion coordinated in a characteristic "claw setting" by an axial cysteine thiolate, two equatorial peptide nitrogens, the sulfur atoms of equatorial cysteine-sulfenic and cysteine-sulfinic acids, and an axial water/hydroxyl moiety. The cysteine-sulfenic acid is susceptible to oxidation, and the enzyme is traditionally prepared using butyric acid as an oxidative protectant. The as-prepared enzyme exhibits a complex electron paramagnetic resonance (EPR) spectrum due to multiple low-spin (S = 1/2) Fe(III) species. Four distinct signals can be assigned to the resting active state, the active state bound to butyric acid, an oxidized Fe(III)-bis(sulfinic acid) form, and an oxidized complex with butyric acid. A combination of comparison with earlier work, development of methods to elicit individual signals, and design and application of a novel density functional theory method for reproducing g tensors to unprecedentedly high precision was used to assign the signals. These species account for the previously reported EPR spectra from Fe-NHases, including spectra observed upon addition of substrates. Completely new EPR signals were observed upon addition of inhibitory boronic acids, and the distinctive g1 features of these signals were replicated in the steady state with the slow substrate acetonitrile. This latter signal constitutes the first EPR signal from a catalytic intermediate of NHase and is assigned to a key intermediate in the proposed catalytic cycle. Earlier, apparently contradictory, electron nuclear double resonance reports are reconsidered in the context of this work.


Subject(s)
Hydro-Lyases/chemistry , Nuclear Magnetic Resonance, Biomolecular , Quantum Theory , Rhodococcus equi/enzymology , Hydro-Lyases/metabolism , Protein Conformation
15.
J Biol Inorg Chem ; 22(2-3): 407-424, 2017 04.
Article in English | MEDLINE | ID: mdl-27853875

ABSTRACT

The active sites of metalloenzymes that catalyze O2-dependent reactions generally contain iron or copper ions. However, several enzymes are capable of activating O2 at manganese or nickel centers instead, and a handful of dioxygenases exhibit activity when substituted with cobalt. This minireview summarizes the catalytic properties of oxygenases and oxidases with mononuclear Mn, Co, or Ni active sites, including oxalate-degrading oxidases, catechol dioxygenases, and quercetin dioxygenase. In addition, recent developments in the O2 reactivity of synthetic Mn, Co, or Ni complexes are described, with an emphasis on the nature of reactive intermediates featuring superoxo-, peroxo-, or oxo-ligands. Collectively, the biochemical and synthetic studies discussed herein reveal the possibilities and limitations of O2 activation at these three "overlooked" metals.


Subject(s)
Cobalt/metabolism , Manganese/metabolism , Nickel/metabolism , Oxygen/metabolism , Enzymes/metabolism , Humans
16.
Inorg Chem ; 55(22): 11839-11853, 2016 Nov 21.
Article in English | MEDLINE | ID: mdl-27801576

ABSTRACT

Mononuclear non-heme iron complexes that serve as structural and functional mimics of the thiol dioxygenases (TDOs), cysteine dioxygenase (CDO) and cysteamine dioxygenase (ADO), have been prepared and characterized with crystallographic, spectroscopic, kinetic, and computational methods. The high-spin Fe(II) complexes feature the facially coordinating tris(4,5-diphenyl-1-methylimidazol-2-yl)phosphine (Ph2TIP) ligand that replicates the three histidine (3His) triad of the TDO active sites. Further coordination with bidentate l-cysteine ethyl ester (CysOEt) or cysteamine (CysAm) anions yielded five-coordinate (5C) complexes that resemble the substrate-bound forms of CDO and ADO, respectively. Detailed electronic-structure descriptions of the [Fe(Ph2TIP)(LS,N)]BPh4 complexes, where LS,N = CysOEt (1) or CysAm (2), were generated through a combination of spectroscopic techniques [electronic absorption, magnetic circular dichroism (MCD)] and density functional theory (DFT). Complexes 1 and 2 decompose in the presence of O2 to yield the corresponding sulfinic acid (RSO2H) products, thereby emulating the reactivity of the TDO enzymes and related complexes. Rate constants and activation parameters for the dioxygenation reactions were measured and interpreted with the aid of DFT calculations for O2-bound intermediates. Treatment of the TDO models with nitric oxide (NO)-a well-established surrogate of O2-led to a mixture of high-spin and low-spin {FeNO}7 species at low temperature (-70 °C), as indicated by electron paramagnetic resonance (EPR) spectroscopy. At room temperature, these Fe/NO adducts convert to a common species with EPR and infrared (IR) features typical of cationic dinitrosyl iron complexes (DNICs). To complement these results, parallel spectroscopic, computational, and O2/NO reactivity studies were carried out using previously reported TDO models that feature an anionic hydrotris(3-phenyl-5-methyl-pyrazolyl)borate (Ph,MeTp-) ligand. Though the O2 reactivities of the Ph2TIP- and Ph,MeTp-based complexes are quite similar, the supporting ligand perturbs the energies of Fe 3d-based molecular orbitals and modulates Fe-S bond covalency, suggesting possible rationales for the presence of neutral 3His coordination in CDO and ADO.


Subject(s)
Dioxygenases/chemistry , Models, Chemical , Nitric Oxide/chemistry , Oxygen/chemistry , Sulfhydryl Compounds/chemistry , Catalytic Domain , Crystallography, X-Ray , Electrons , Proton Magnetic Resonance Spectroscopy
17.
Inorg Chem ; 54(17): 8744-54, 2015 Sep 08.
Article in English | MEDLINE | ID: mdl-26280846

ABSTRACT

The remarkable chemistry of mononuclear complexes featuring tridentate, meridionally chelating "pincer" ligands has stimulated the development of ligand frameworks containing multiple pincer sites. Here, the coordination chemistry of a novel pentadentate ligand (L(N3O2)) that provides two closely spaced NNO pincer-type compartments fused together at a central diarylamido unit is described. The trianionic L(N3O2) chelate supports homobimetallic structures in which each M(II) ion (M = Co, Cu, Zn) is bound in a meridional fashion by the bridging diarylamido N atom and O,N-donors of the salicyaldimine arms. The metal centers are also coordinated by a mono- or bidentate auxiliary ligand (L(aux)), resulting in complexes with the general form [M2(L(N3O2))(L(aux))2](+) (where L(aux) = 1-methyl-benzimidazole (1MeBI), 2,2'-bipyridine (bpy), 4,4'-dibromo-2,2'-bipyridine (bpy(Br2)), or (S)-2-(4-isopropyl-4,5-dihydrooxazolyl)pyridine (S-(iPr)OxPy)). The fused nature of the NNO pincer sites results in short metal-metal distances ranging from 2.70 Å for [Co2(L(N3O2)) (bpy)2](+) to 3.28 Å for [Zn2(L(N3O2)) (bpy)2](+), as revealed by X-ray crystallography. The complexes possess C2 symmetry due to the twisting of the aryl rings of the µ-NAr2 core; spectroscopic studies indicate that chiral L(aux) ligands, such as S-(iPr)OxPy, are capable of controlling the helical sense of the L(N3O2) scaffold. Since the four- or five-coordinate M(II) centers are linked solely by the amido moiety, each features an open coordination site in the intermetallic region, allowing for the possibility of metal-metal cooperativity in small-molecule activation. Indeed, the dicobalt(II) complex [Co2(L(N3O2)) (bpy(Br2))2](+) reacts with O2 to yield a dicobalt(III) species with a µ-1,2-peroxo ligand. The bpy-containing complexes exhibit rich electrochemical properties due to multiple metal- and ligand-based redox events across a wide (3.0 V) potential window. Using electron paramagnetic resonance (EPR) spectroscopy and density functional theory (DFT), it was determined that one-electron oxidation of [Co2(L(N3O2)) (bpy)2](+) results in formation of a S = 1/2 species with a L(N3O2)-based radical coupled to low-spin Co(II) centers.

18.
Inorg Chem ; 54(17): 8509-17, 2015 Sep 08.
Article in English | MEDLINE | ID: mdl-26252561

ABSTRACT

Molecular examples of mixed-valence copper complexes through chemical oxidation are rare but invoked in the mechanism of substrate activation, especially oxygen, in copper-containing enzymes. To examine the cooperative chemistry between two metals in close proximity to each other we began studying the reactivity of a dinuclear Cu(I) amidinate complex. The reaction of [(2,6-Me2C6H3N)2C(H)]2Cu2, 1, with I2 in tetrahydrofuran (THF), CH3CN, and toluene affords three new mixed-valence copper complexes [(2,6-Me2C6H3N)2C(H)]2Cu2(µ2-I3)(THF)2, 2, [(2,6-Me2C6H3N)2C(H)]2Cu2(µ2-I) (NCMe)2, 3, and [(2,6-Me2C6H3N)2C(H)]3Cu3(µ3-I)2, 4, respectively. The first two compounds were characterized by UV-vis and electron paramagnetic resonance spectroscopies, and their molecular structure was determined by X-ray crystallography. Both di- and trinuclear mixed-valence intermediates were characterized for the reaction of compound 1 to compound 4, and the molecular structure of 4 was determined by X-ray crystallography. The electronic structure of each of these complexes was also investigated using density functional theory.


Subject(s)
Amidines/chemistry , Copper/chemistry , Iodine/chemistry , Organometallic Compounds/chemistry , Crystallography, X-Ray , Models, Molecular , Molecular Structure , Organometallic Compounds/chemical synthesis , Oxidation-Reduction , Quantum Theory
19.
Inorg Chem ; 53(23): 12240-2, 2014 Dec 01.
Article in English | MEDLINE | ID: mdl-25393154

ABSTRACT

Two mononuclear iron(II) p-semiquinonate (pSQ) complexes have been generated via one-electron reduction of precursor complexes containing a substituted 1,4-naphthoquinone ligand. Detailed spectroscopic and computational analysis confirmed the presence of a coordinated pSQ radical ferromagnetically coupled to the high-spin Fe(II) center. The complexes are intended to model electronic interactions between (semi)quinone and iron cofactors in biology.


Subject(s)
Iron Compounds/chemical synthesis , Quinones/chemistry , Crystallography, X-Ray , Iron Compounds/chemistry , Ligands , Models, Molecular , Molecular Structure , Oxidation-Reduction
20.
Inorg Chem ; 53(8): 4047-61, 2014 Apr 21.
Article in English | MEDLINE | ID: mdl-24697567

ABSTRACT

This study describes the O2 reactivity of a series of high-spin mononuclear Fe(II) complexes each containing the facially coordinating tris(4,5-diphenyl-1-methylimidazol-2-yl)phosphine ((Ph2)TIP) ligand and one of the following bidentate, redox-active ligands: 4-tert-butylcatecholate ((tBu)CatH(-)), 4,6-di-tert-butyl-2-aminophenolate ((tBu2)APH(-)), or 4-tert-butyl-1,2-phenylenediamine ((tBu)PDA). The preparation and X-ray structural characterization of [Fe(2+)((Ph2)TIP)((tBu)CatH)]OTf, [3]OTf and [Fe(2+)((Ph2)TIP)((tBu)PDA)](OTf)2, [4](OTf)2 are described here, whereas [Fe(2+)((Ph2)TIP)((tBu2)APH)]OTf, [2]OTf was reported in our previous paper [Bittner et al., Chem.-Eur. J. 2013, 19, 9686-9698]. These complexes mimic the substrate-bound active sites of nonheme iron dioxygenases, which catalyze the oxidative ring-cleavage of aromatic substrates like catechols and aminophenols. Each complex is oxidized in the presence of O2, and the geometric and electronic structures of the resulting complexes were examined with spectroscopic (absorption, EPR, Mössbauer, resonance Raman) and density functional theory (DFT) methods. Complex [3]OTf reacts rapidly with O2 to yield the ferric-catecholate species [Fe(3+)((Ph2)TIP)((tBu)Cat)](+) (3(ox)), which undergoes further oxidation to generate an extradiol cleavage product. In contrast, complex [4](2+) experiences a two-electron (2e(-)), ligand-based oxidation to give [Fe(2+)((Ph2)TIP)((tBu)DIBQ)](2+) (4(ox)), where DIBQ is o-diiminobenzoquinone. The reaction of [2](+) with O2 is also a 2e(-) process, yet in this case both the Fe center and (tBu2)AP ligand are oxidized; the resulting complex (2(ox)) is best described as [Fe(3+)((Ph2)TIP)((tBu2)ISQ)](+), where ISQ is o-iminobenzosemiquinone. Thus, the oxidized complexes display a remarkable continuum of electronic structures ranging from [Fe(3+)(L(2-))](+) (3(ox)) to [Fe(3+)(L(•-))](2+) (2(ox)) to [Fe(2+)(L(0))](2+) (4(ox)). Notably, the O2 reaction rates vary by a factor of 10(5) across the series, following the order [3](+) > [2](+) > [4](2+), even though the complexes have similar structures and Fe(3+/2+) redox potentials. To account for the kinetic data, we examined the relative abilities of the title complexes to bind O2 and participate in H-atom transfer reactions. We conclude that the trend in O2 reactivity can be rationalized by accounting for the role of proton transfer(s) in the overall reaction.


Subject(s)
Aminophenols/chemistry , Catechols/chemistry , Ferrous Compounds/chemistry , Oxygen/chemistry , Phenylenediamines/chemistry , Crystallography, X-Ray , Ligands , Models, Molecular , Molecular Structure
SELECTION OF CITATIONS
SEARCH DETAIL
...