Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
Polymers (Basel) ; 15(12)2023 Jun 06.
Article in English | MEDLINE | ID: mdl-37376235

ABSTRACT

Highly filled plastics may offer a suitable solution within the production process for bipolar plates. However, the compounding of conductive additives and the homogeneous mixing of the plastic melt, as well as the accurate prediction of the material behavior, pose a major challenge for polymer engineers. To support the engineering design process of compounding by twin-screw extruders, this present study offers a method to evaluate the achievable mixing quality based on numerical flow simulations. For this purpose, graphite compounds with a filling content of up to 87 wt.-% were successfully produced and characterized rheologically. Based on a particle tracking method, improved element configurations were found for twin-screw compounding. Furthermore, a method to characterize the wall slip ratios of the compounded material system with different filler content is presented, since highly filled material systems often tend to wall slip during processing, which could have a very large influence on accurate prediction. Numerical simulations of the high capillary rheometer were conducted to predict the pressure loss in the capillary. The simulation results show a good agreement and were experimentally validated. In contrast to the expectation, higher filler grades showed only a lower wall slip than compounds with a low graphite content. Despite occurring wall slip effects, the developed flow simulation for the design of slit dies can provide a good prediction for both low and high filling ratios of the graphite compounds.

2.
Article in English | MEDLINE | ID: mdl-35206250

ABSTRACT

Videoconferencing (VC) is a type of online meeting that allows two or more participants from different locations to engage in live multi-directional audio-visual communication and collaboration (e.g., via screen sharing). The COVID-19 pandemic has induced a boom in both private and professional videoconferencing in the early 2020s that elicited controversial public and academic debates about its pros and cons. One main concern has been the phenomenon of videoconference fatigue. The aim of this conceptual review article is to contribute to the conceptual clarification of VC fatigue. We use the popular and succinct label "Zoom fatigue" interchangeably with the more generic label "videoconference fatigue" and define it as the experience of fatigue during and/or after a videoconference, regardless of the specific VC system used. We followed a structured eight-phase process of conceptual analysis that led to a conceptual model of VC fatigue with four key causal dimensions: (1) personal factors, (2) organizational factors, (3) technological factors, and (4) environmental factors. We present this 4D model describing the respective dimensions with their sub-dimensions based on theories, available evidence, and media coverage. The 4D-model is meant to help researchers advance empirical research on videoconference fatigue.


Subject(s)
COVID-19 , Pandemics , COVID-19/epidemiology , Fatigue/etiology , Humans , SARS-CoV-2 , Videoconferencing
3.
Sci Rep ; 11(1): 10158, 2021 05 12.
Article in English | MEDLINE | ID: mdl-33980950

ABSTRACT

We analyzed SARS-CoV-2 seroprevalence in a large, well-described representative Viennese cohort after an early governmental lockdown with respect to the occurrence of symptoms and household transmission. Participants of the LEAD Study, a population-based cohort study from Vienna, Austria, were invited along with their household members (April 20th to May20th 2020). Sera were analyzed using anti-SARS-CoV-2 immunoassay including a neutralization test as a confirmatory assay. A total of 12,419 individuals participated (5984 LEAD participants; 6435 household members), 163 (1.31%; 59 LEAD cohort members) of whom were SARS-CoV-2 antibody positive. The estimated number of COVID-19 cases projected from our findings by age and sex for Vienna was 21,504 (1.13%). Cumulative number of positively tested cases in Vienna until May 20th 2020 was 3020, hence 7.1 times (95% confidence interval 5.5-9.1) lower than projected. Relative risk (RR) of seropositivity by age was highest for children aged 6-9 years [RR compared to age group 20-49: 1.21 (CI 0.37-4.01)], lowest for ≥ 65 years [RR 0.47 (CI 0.21-1.03)]. Half of the positive individuals developed no or mild symptoms. In a multivariate analysis, taste and smell disturbances were most strongly related to SARS-CoV-2 positivity. Infection probability within households with one confirmed SARS-CoV-2-specific antibody-positive person was 31%. Although seroprevalence was very low (1.13%) for a central European capital city, due to an early governmental lockdown, SARS-CoV-2 infections were more prevalent than officially reported polymerase chain reaction-positive cases. Of note, seroprevalence was highest in young children. Half of SARS-CoV-2 antibody-positive subjects had no or only mild symptoms. Taste and smell disturbances were most prominent, possibly guiding clinicians in diagnosing SARS-CoV-2 infection.


Subject(s)
COVID-19/epidemiology , Adolescent , Adult , Aged , Aged, 80 and over , Austria/epidemiology , COVID-19/diagnosis , COVID-19/prevention & control , COVID-19 Serological Testing , Child , Communicable Disease Control , Female , Humans , Male , Middle Aged , Prospective Studies , SARS-CoV-2/isolation & purification , Seroepidemiologic Studies , Young Adult
4.
JMIR Med Inform ; 6(4): e11252, 2018 Nov 30.
Article in English | MEDLINE | ID: mdl-30504120

ABSTRACT

BACKGROUND: Several models suggest how the qualities of a product or service influence user satisfaction. Models such as the Customer Satisfaction Index (CSI), Technology Acceptance Model (TAM), and Delone and McLean Information Systems Success demonstrate those relations and have been used in the context of health information systems. OBJECTIVE: This study aimed to investigate which qualities foster greater satisfaction among patient and professional users. In addition, we are interested in knowing to what extent improvement in those qualities can explain user satisfaction and whether this makes user satisfaction a proxy indicator of those qualities. METHODS: The Unified eValuation using ONtology (UVON) method was used to construct an ontology of the required qualities for 7 electronic health (eHealth) apps being developed in the Future Internet Social and Technological Alignment Research (FI-STAR) project, a European Union (EU) project in electronic health (eHealth). The eHealth apps were deployed across 7 EU countries. The ontology included and unified the required qualities of those systems together with the aspects suggested by the Model for ASsessment of Telemedicine apps (MAST) evaluation framework. Moreover, 2 similar questionnaires for 87 patient users and 31 health professional users were elicited from the ontology. In the questionnaires, the user was asked if the system has improved the specified qualities and if the user was satisfied with the system. The results were analyzed using Kendall correlation coefficients matrices, incorporating the quality and satisfaction aspects. For the next step, 2 partial least squares structural equation modeling (PLS-SEM) path models were developed using the quality and satisfaction measure variables and the latent construct variables that were suggested by the UVON method. RESULTS: Most of the quality aspects grouped by the UVON method are highly correlated. Strong correlations in each group suggest that the grouped qualities can be measures that reflect a latent quality construct. The PLS-SEM path analysis for the patients reveals that the effectiveness, safety, and efficiency of treatment provided by the system are the most influential qualities in achieving and predicting user satisfaction. For the professional users, effectiveness and affordability are the most influential. The parameters of the PLS-SEM that are calculated allow for the measurement of a user satisfaction index similar to CSI for similar health information systems. CONCLUSIONS: For both patients and professionals, the effectiveness of systems highly contributes to their satisfaction. Patients care about improvements in safety and efficiency, whereas professionals care about improvements in the affordability of treatments with health information systems. User satisfaction is reflected more in the users' evaluation of system output and fulfillment of expectations but slightly less in how far the system is from ideal. Investigating satisfaction scores can be a simple and fast way to infer if the system has improved the abovementioned qualities in treatment and care.

5.
Front Microbiol ; 9: 878, 2018.
Article in English | MEDLINE | ID: mdl-29867795

ABSTRACT

In filamentous fungi, growth and protein secretion occurs predominantly at the tip of long, thread like cells termed hyphae. This requires coordinated regulation of multiple processes, including vesicle trafficking, exocytosis, and endocytosis, which are facilitated by a complex cytoskeletal apparatus. In this study, functional analyses of the small GTPase ArfA from Aspergillus niger demonstrate that this protein functionally complements the Saccharomyces cerevisiae ARF1/2, and that this protein is essential for A. niger. Loss-of-function and gain-of-function analyses demonstrate that titration of arfA expression impacts hyphal growth rate, hyphal tip morphology, and protein secretion. Moreover, localization of the endocytic machinery, visualized via fluorescent tagging of the actin ring, was found to be abnormal in ArfA under- and overexpressed conditions. Finally, we provide evidence that the major secreted protein GlaA localizes at septal junctions, indicating that secretion in A. niger may occur at these loci, and that this process is likely impacted by arfA expression levels. Taken together, our results demonstrate that ArfA fulfills multiple functions in the secretory pathway of A. niger.

6.
Microb Cell Fact ; 17(1): 95, 2018 Jun 16.
Article in English | MEDLINE | ID: mdl-29908567

ABSTRACT

BACKGROUND: The lifestyle of filamentous fungi depends on the secretion of hydrolytic enzymes into the surrounding medium, which degrade polymeric substances into monomers that are then taken up to sustain metabolism. This feature has been exploited in biotechnology to establish platform strains with high secretory capacity including Aspergillus niger. The accepted paradigm is that proteins become mainly secreted at the tips of fungal hyphae. However, it is still a matter of debate if the amount of growing hyphal tips in filamentous fungi correlates with an increase in secretion, with previous studies showing either a positive or no correlation. RESULTS: Here, we followed a systematic approach to study protein secretion in A. niger. First, we put the glaA gene encoding for glucoamylase (GlaA), the most abundant secreted protein of A. niger, under control of the tunable Tet-on system. Regulation of glaA gene expression by omitting or adding the inducer doxycycline to cultivation media allowed us to study the effect of glaA under- or overexpression in the same isolate. By inducing glaA expression in a fluorescently tagged v-SNARE reporter strain expressing GFP-SncA, we could demonstrate that the amount of post-Golgi carriers indeed depends on and correlates with glaA gene expression. By deleting the racA gene, encoding the Rho-GTPase RacA in this isolate, we generated a strain which is identical to the parental strain with respect to biomass formation but produces about 20% more hyphal tips. This hyperbranching phenotype caused a more compact macromorphology in shake flask cultivations. When ensuring continuous high-level expression of glaA by repeated addition of doxycycline, this hyperbranching strain secreted up to four times more GlaA into the culture medium compared to its parental strain. CONCLUSION: The data obtained in this study strongly indicate that A. niger responds to forced transcription of secretory enzymes with increased formation of post-Golgi carriers to efficiently accommodate the incoming cargo load. This physiological adaptation can be rationally exploited to generate hypersecretion platforms based on a hyperbranching phenotype. We propose that a racA deletion background serves as an excellent chassis for such hypersecretion strains.


Subject(s)
Aspergillus niger/metabolism , Glucan 1,4-alpha-Glucosidase/metabolism
7.
BMC Microbiol ; 17(1): 57, 2017 03 08.
Article in English | MEDLINE | ID: mdl-28274204

ABSTRACT

BACKGROUND: For Aspergillus niger, a broad set of auxotrophic and dominant resistance markers is available. However, only few offer targeted modification of a gene of interest into or at a genomic locus of choice, which hampers functional genomics studies. We thus aimed to extend the available set by generating a histidine auxotrophic strain with a characterized hisB locus for targeted gene integration and deletion in A. niger. RESULTS: A histidine-auxotrophic strain was established via disruption of the A. niger hisB gene by using the counterselectable pyrG marker. After curing, a hisB - , pyrG - strain was obtained, which served as recipient strain for further studies. We show here that both hisB orthologs from A. nidulans and A. niger can be used to reestablish histidine prototrophy in this recipient strain. Whereas the hisB gene from A. nidulans was suitable for efficient gene targeting at different loci in A. niger, the hisB gene from A. niger allowed efficient integration of a Tet-on driven luciferase reporter construct at the endogenous non-functional hisB locus. Subsequent analysis of the luciferase activity revealed that the hisB locus is tight under non-inducing conditions and allows even higher luciferase expression levels compared to the pyrG integration locus. CONCLUSION: Taken together, we provide here an alternative selection marker for A. niger, hisB, which allows efficient homologous integration rates as well as high expression levels which compare favorably to the well-established pyrG selection marker.


Subject(s)
Aspergillus niger/genetics , Fungal Proteins/genetics , Gene Targeting/methods , Genes, Fungal/genetics , Genetic Markers , Aspergillus niger/metabolism , Gene Expression Regulation, Fungal , Genetic Vectors , Histidine/genetics , Histidine/metabolism , Homologous Recombination , Luciferases/analysis , Mutagenesis, Site-Directed , Phenotype , Sequence Deletion , Spores, Fungal
8.
Adv Biochem Eng Biotechnol ; 149: 91-132, 2015.
Article in English | MEDLINE | ID: mdl-25616499

ABSTRACT

Living with limits. Getting more from less. Producing commodities and high-value products from renewable resources including waste. What is the driving force and quintessence of bioeconomy outlines the lifestyle and product portfolio of Aspergillus, a saprophytic genus, to which some of the top-performing microbial cell factories belong: Aspergillus niger, Aspergillus oryzae and Aspergillus terreus. What makes them so interesting for exploitation in biotechnology and how can they help us to address key challenges of the twenty-first century? How can these strains become trimmed for better growth on second-generation feedstocks and how can we enlarge their product portfolio by genetic and metabolic engineering to get more from less? On the other hand, what makes it so challenging to deduce biological meaning from the wealth of Aspergillus -omics data? And which hurdles hinder us to model and engineer industrial strains for higher productivity and better rheological performance under industrial cultivation conditions? In this review, we will address these issues by highlighting most recent findings from the Aspergillus research with a focus on fungal growth, physiology, morphology and product formation. Indeed, the last years brought us many surprising insights into model and industrial strains. They clearly told us that similar is not the same: there are different ways to make a hypha, there are more protein secretion routes than anticipated and there are different molecular and physical mechanisms which control polar growth and the development of hyphal networks. We will discuss new conceptual frameworks derived from these insights and the future scientific advances necessary to create value from Aspergillus Big Data.


Subject(s)
Aspergillus/physiology , Industrial Microbiology/methods , Aspergillus/genetics , Aspergillus/metabolism , Citric Acid/chemistry , Computational Biology/methods , Databases, Genetic , Fungal Proteins/metabolism , Genome, Fungal , Genomics , Models, Theoretical
9.
Biotechnol J ; 9(4): 545-54, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24497417

ABSTRACT

As membrane proteins play an important role in a variety of life-threatening diseases, the development of therapeutic monoclonal antibodies against membrane proteins is of significant interest. Among many other requirements, the process of antibody drug development requires a set of tailor-made assays for the characterization of the antibodies and for monitoring their activity. Designing assays to characterize antibodies directed to membrane proteins is challenging, because the natural targets are often not available in a format that is compatible with a biochemical assay setup. Thus, alternatives that mimic the targeted membrane proteins are needed. In this study, we developed optimal peptidic mimotopes for the ELISA-based detection of the novel therapeutic antibody IMAB362 in biological samples. Initial hits were identified using phage display and these hits were optimized with the help of structure-activity relationship analysis on peptide microarrays. The optimized peptides showed binding constants in the low nanomolar to picomolar range, an improvement by a factor of up to 30 compared to the initial hits. The best mimotope (apparent KD = 0.15 nM) was successfully used for the ELISA-based quantification of IMAB362 in samples from a mouse pharmacokinetic study. The process described allows the rapid discovery of mimotopes for target proteins that are difficult to produce or handle, which can then be used in pre-clinical and clinical assays or for the purification of biological products.


Subject(s)
Antibodies, Monoclonal/analysis , Antibodies, Monoclonal/pharmacokinetics , Peptides/chemistry , Peptides/metabolism , Protein Array Analysis/methods , Animals , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/metabolism , Enzyme-Linked Immunosorbent Assay , Female , Mice, Inbred BALB C , Peptide Library , Protein Binding , Structure-Activity Relationship
10.
J Biol Chem ; 289(12): 8493-507, 2014 Mar 21.
Article in English | MEDLINE | ID: mdl-24474690

ABSTRACT

Targeting effector molecules to tumor cells is a promising mode of action for cancer therapy and diagnostics. Binding proteins with high affinity and specificity for a tumor target that carry effector molecules such as toxins, cytokines, or radiolabels to their intended site of action are required for these applications. In order to yield high tumor accumulation while maintaining low levels in healthy tissues and blood, the half-life of such conjugates needs to be in an optimal range. Scaffold-based binding molecules are small proteins with high affinity and short systemic circulation. Due to their low molecular complexity, they are well suited for combination with effector molecules as well as half-life extension technologies yielding therapeutics with half-lives adapted to the specific therapy. We have identified ubiquitin as an ideal scaffold protein due to its outstanding biophysical and biochemical properties. Based on a dimeric ubiquitin library, high affinity and specific binding molecules, so-called Affilin® molecules, have been selected against the extradomain B of fibronectin, a target almost exclusively expressed in tumor tissues. Extradomain B-binding molecules feature high thermal and serum stability as well as strong in vitro target binding and in vivo tumor accumulation. Application of several half-life extension technologies results in molecules of largely unaffected affinity but significantly prolonged in vivo half-life and tumor retention. Our results demonstrate the utility of ubiquitin as a scaffold for the generation of high affinity binders in a modular fashion, which can be combined with effector molecules and half-life extension technologies.


Subject(s)
Fibronectins/metabolism , Neoplasms/metabolism , Ubiquitin/metabolism , Animals , Cell Line , Humans , Mice , Models, Molecular , Peptide Library , Protein Binding , Protein Engineering , Protein Structure, Tertiary , Ubiquitin/chemistry , Ubiquitin/genetics , Ubiquitin/pharmacokinetics
11.
Microbiology (Reading) ; 160(Pt 2): 316-329, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24295824

ABSTRACT

The filamentous fungus Aspergillus niger is an industrially exploited protein expression platform, well known for its capacity to secrete high levels of proteins. To study the process of protein secretion in A. niger, we established a GFP-v-SNARE reporter strain in which the trafficking and dynamics of secretory vesicles can be followed in vivo. The biological role of putative A. niger orthologues of seven secretion-specific genes, known to function in key aspects of the protein secretion machinery in Saccharomyces cerevisiae, was analysed by constructing respective gene deletion mutants in the GFP-v-SNARE reporter strain. Comparison of the deletion phenotype of conserved proteins functioning in the secretory pathway revealed common features but also interesting differences between S. cerevisiae and A. niger. Deletion of the S. cerevisiae Sec2p orthologue in A. niger (SecB), encoding a guanine exchange factor for the GTPase Sec4p (SrgA in A. niger), did not have an obvious phenotype, while SEC2 deletion in S. cerevisiae is lethal. Similarly, deletion of the A. niger orthologue of the S. cerevisiae exocyst subunit Sec3p (SecC) did not result in a lethal phenotype as in S. cerevisiae, although severe growth reduction of A. niger was observed. Deletion of secA, secH and ssoA (encoding SecA, SecH and SsoA the A. niger orthologues of S. cerevisiae Sec1p, Sec8p and Sso1/2p, respectively) showed that these genes are essential for A. niger, similar to the situation in S. cerevisiae. These data demonstrate that the orchestration of exocyst-mediated vesicle transport is only partially conserved in S. cerevisiae and A. niger.


Subject(s)
Aspergillus niger/genetics , Aspergillus niger/metabolism , Exocytosis , Fungal Proteins/metabolism , Transport Vesicles/genetics , Gene Deletion , Genes, Essential , Genes, Fungal , Genes, Reporter , Green Fluorescent Proteins/analysis , Green Fluorescent Proteins/genetics , Microbial Viability , Protein Transport , Recombinant Fusion Proteins/analysis , Recombinant Fusion Proteins/genetics , SNARE Proteins/genetics
12.
Article in English | MEDLINE | ID: mdl-28955447

ABSTRACT

BACKGROUND: Cell wall integrity, vesicle transport and protein secretion are key factors contributing to the vitality and productivity of filamentous fungal cell factories such as Aspergillus niger. In order to pioneer rational strain improvement programs, fundamental knowledge on the genetic basis of these processes is required. The aim of the present study was thus to unravel survival strategies of A. niger when challenged with compounds interfering directly or indirectly with its cell wall integrity: calcofluor white, caspofungin, aureobasidin A, FK506 and fenpropimorph. RESULTS: Transcriptomics signatures of A. niger and phenotypic analyses of selected null mutant strains were used to predict regulator proteins mediating the survival responses against these stressors. This integrated approach allowed us to reconstruct a model for the cell wall salvage gene network of A. niger that ensures survival of the fungus upon cell surface stress. The model predicts that (i) caspofungin and aureobasidin A induce the cell wall integrity pathway as a main compensatory response via induction of RhoB and RhoD, respectively, eventually activating the mitogen-activated protein kinase kinase MkkA and the transcription factor RlmA. (ii) RlmA is the main transcription factor required for the protection against calcofluor white but it cooperates with MsnA and CrzA to ensure survival of A. niger when challenged with caspofungin and aureobasidin A. (iii) Membrane stress provoked by aureobasidin A via disturbance of sphingolipid synthesis induces cell wall stress, whereas fenpropimorph-induced disturbance of ergosterol synthesis does not. CONCLUSION: The present work uncovered a sophisticated defence system of A. niger which employs at least three transcription factors - RlmA, MsnA and CrzA - to protect itself against cell wall stress. The transcriptomic data furthermore predicts a fourth transfactor, SrbA, which seems to be specifically important to survive fenpropimorph-induced cell membrane stress. Future studies will disclose how these regulators are interlocked in different signaling pathways to secure survival of A. niger under different cell wall stress conditions.

13.
PLoS One ; 7(2): e31298, 2012.
Article in English | MEDLINE | ID: mdl-22363609

ABSTRACT

A variety of approaches have been employed to generate binding proteins from non-antibody scaffolds. Utilizing a beta-sheet of the human ubiquitin for paratope creation we obtained binding proteins against tumor necrosis factor (TNF)-alpha. The bioactive form of this validated pharmacological target protein is a non-covalently linked homo-trimer. This structural feature leads to the observation of a certain heterogeneity concerning the binding mode of TNF-alpha binding molecules, for instance in terms of monomer/trimer specificity. We analyzed a ubiquitin-based TNF-alpha binder, selected by ribosome display, with a particular focus on its mode of interaction. Using enzyme-linked immunosorbent assays, specific binding to TNF-alpha with nanomolar affinity was observed. In isothermal titration calorimetry we obtained comparable results regarding the affinity and detected an exothermic reaction with one ubiquitin-derived binding molecule binding one TNF-alpha trimer. Using NMR spectroscopy and other analytical methods the 1:3 stoichiometry could be confirmed. Detailed binding analysis showed that the interaction is affected by the detergent Tween-20. Previously, this phenomenon was reported only for one other type of alternative scaffold-derived binding proteins--designed ankyrin repeat proteins--without further investigation. As demonstrated by size exclusion chromatography and NMR spectroscopy, the presence of the detergent increases the association rate significantly. Since the special architecture of TNF-alpha is known to be modulated by detergents, the access to the recognized epitope is indicated to be restricted by conformational transitions within the target protein. Our results suggest that the ubiquitin-derived binding protein targets a new epitope on TNF-alpha, which differs from the epitopes recognized by TNF-alpha neutralizing antibodies.


Subject(s)
Recombinant Proteins/metabolism , Tumor Necrosis Factor-alpha/metabolism , Ubiquitin/metabolism , Amino Acids/metabolism , Animals , Calorimetry , Cell Line , Chromatography, Gel , Circular Dichroism , Enzyme-Linked Immunosorbent Assay , Magnetic Resonance Spectroscopy , Mutant Proteins/chemistry , Mutant Proteins/metabolism , Peptide Library , Protein Binding , Ubiquitin/chemistry
14.
J Mol Biol ; 372(1): 172-85, 2007 Sep 07.
Article in English | MEDLINE | ID: mdl-17628592

ABSTRACT

The concept of novel binding proteins as an alternative to antibodies has undergone rapid development and is now ready for practical use in a wide range of applications. Alternative binding proteins, based on suitable scaffolds with desirable properties, are selected from combinatorial libraries in vitro. Here, we describe an approach using a beta-sheet of human gamma-B-crystallin to generate a universal binding site through randomization of eight solvent-exposed amino acid residues selected according to structural and sequence analyses. Specific variants, so-called Affilin, have been isolated from a phage display library against a variety of targets that differ considerably in size and structure. The isolated Affilin variants can be produced in Escherichia coli as soluble proteins and have a high level of thermodynamic stability. The crystal structures of the human wild-type gamma-B-crystallin and a selected Affilin variant have been determined to 1.7 A and 2.0 A resolution, respectively. Comparison of the two molecules indicates that the human gamma-B-crystallin tolerates amino acid exchanges with no major structural change. We conclude that the intrinsically stable and easily expressed gamma-B-crystallin provides a suitable framework for the generation of novel binding molecules.


Subject(s)
Carrier Proteins/chemical synthesis , Carrier Proteins/isolation & purification , Protein Engineering/methods , gamma-Crystallins/chemistry , Animals , Carrier Proteins/chemistry , Carrier Proteins/metabolism , Cattle , Estradiol/metabolism , Feasibility Studies , Humans , Immunoglobulin G/metabolism , Models, Molecular , Nerve Growth Factor/metabolism , Peptide Library , Protein Binding , Protein Precursors/metabolism , Protein Structure, Secondary , Substrate Specificity , Testosterone/metabolism
15.
Trends Biotechnol ; 23(10): 514-22, 2005 Oct.
Article in English | MEDLINE | ID: mdl-16054718

ABSTRACT

Using combinatorial chemistry to generate novel binding molecules based on protein frameworks ('scaffolds') is a concept that has been strongly promoted during the past five years in both academia and industry. Non-antibody recognition proteins derive from different structural families and mimic the binding principle of immunoglobulins to varying degrees. In addition to the specific binding of a pre-defined target, these proteins provide favourable characteristics such as robustness, ease of modification and cost-efficient production. The broad spectrum of potential applications, including research tools, separomics, diagnostics and therapy, has led to the commercial exploitation of this technology by various small- and medium-sized companies. It is predicted that scaffold-based affinity reagents will broaden and complement applications that are presently covered by natural or recombinant antibodies. Here, we provide an overview on current approaches in the biotech industry, considering both scientific and commercial aspects.


Subject(s)
Drug Industry , Industry , Proteins/chemistry , Combinatorial Chemistry Techniques , Protein Engineering
16.
Biosens Bioelectron ; 17(4): 305-13, 2002 Apr.
Article in English | MEDLINE | ID: mdl-11849927

ABSTRACT

Apart from the decisive sensitivity and specificity of immunosensors, the employed antibodies essentially contribute to additional key factors like fabrication costs for sensor chips and sensor stability. A production scheme for recombinant antibody fragments has been optimised with respect to these particular issues of biosensor development. The phagemid vector pCANTAB 5 E is widely used for the selection of antibody fragments from corresponding libraries. However, large-scale production of the selected single-chain F(v) (scFv) fragments is substantially restricted by the high cost for the inducer IPTG and the anti-E-tag antibody. The latter is needed in significant amounts for the purification of the recombinant protein. A generic strategy was established for subcloning scFv variable regions from pCANTAB 5 E into the plasmid pASK85 for the expression of F(ab) fragments. pASK85 bears coding sequences for murine constant domains including a His(6) tag at the carboxyl-terminal end of the constant heavy chain domain. The anti-s-triazine antibody K47H served as a model system in this study. Biosynthesis of the F(ab) fragment in a high cell density fermenter was induced by addition of anhydrotetracycline. The F(ab) fragment was subsequently purified from the periplasmic extract in a single step by immobilized metal affinity chromatography (IMAC). A yield of 100 microg/lxOD(550) purified F(ab) fragment was obtained employing a standard fermentation scheme. The sensitivity and cross-reactivity of the F(ab) was comparable to the parent scFv when assayed by enzyme immunoassay. However, the F(ab) fragment exhibited significantly improved long-term stability.


Subject(s)
Cloning, Molecular/methods , Immunoglobulin Fab Fragments/biosynthesis , Immunoglobulin Fab Fragments/isolation & purification , Models, Genetic , Recombinant Fusion Proteins/isolation & purification , Animals , Biosensing Techniques/methods , Enzyme-Linked Immunosorbent Assay , Escherichia coli/genetics , Fermentation , Genetic Vectors , Immunoglobulin Fab Fragments/genetics , Immunoglobulin Fragments/genetics , Mice , Recombinant Fusion Proteins/genetics , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...