Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Stem Cell Res ; 77: 103437, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38723411

ABSTRACT

Human pluripotent stem cells (hiPSC) represent a unique opportunity to model lung development and chronic bronchial diseases. We generated a hiPSC line from a highly characterized healthy heavy smoker male donor free from emphysema or tobacco related disease. Peripheral blood mononuclear cells (PBMCs) were reprogrammed using integration-free Sendai virus. The cell line had normal karyotype, expressed pluripotency hallmarks, and differentiated into the three primary germ layers. The reported UHOMi007-A iPSC line may be used as a control to model lung development, study human chronic bronchial diseases and drug testing.


Subject(s)
Induced Pluripotent Stem Cells , Leukocytes, Mononuclear , Humans , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/cytology , Leukocytes, Mononuclear/metabolism , Leukocytes, Mononuclear/cytology , Male , Cell Line , Cell Differentiation , Smokers , Cellular Reprogramming
2.
Cells ; 11(15)2022 08 05.
Article in English | MEDLINE | ID: mdl-35954266

ABSTRACT

Background: Chronic Obstructive Pulmonary Disease (COPD), a major cause of mortality and disability, is a complex disease with heterogeneous and ill-understood biological mechanisms. Human induced pluripotent stem cells (hiPSCs) are a promising tool to model human disease, including the impact of genetic susceptibility. Methods: We developed a simple and reliable method for reprogramming peripheral blood mononuclear cells into hiPSCs and to differentiate them into air−liquid interface bronchial epithelium within 45 days. Importantly, this method does not involve any cell sorting step. We reprogrammed blood cells from one healthy control and three patients with very severe COPD. Results: The mean cell purity at the definitive endoderm and ventral anterior foregut endoderm (vAFE) stages was >80%, assessed by quantifying C-X-C Motif Chemokine Receptor 4/SRY-Box Transcription Factor 17 (CXCR4/SOX17) and NK2 Homeobox 1 (NKX2.1) expression, respectively. vAFE cells from all four hiPSC lines differentiated into bronchial epithelium in air−liquid interface conditions, with large zones covered by beating ciliated, basal, goblets, club cells and neuroendocrine cells, as found in vivo. The hiPSC-derived airway epithelium (iALI) from patients with very severe COPD and from the healthy control were undistinguishable. Conclusions: iALI bronchial epithelium is ready for better understanding lung disease pathogenesis and accelerating drug discovery.


Subject(s)
Induced Pluripotent Stem Cells , Pulmonary Disease, Chronic Obstructive , Epithelium/metabolism , Humans , Leukocytes, Mononuclear/pathology , Pulmonary Disease, Chronic Obstructive/metabolism , Respiratory Mucosa/pathology
3.
BMC Biol ; 20(1): 8, 2022 01 07.
Article in English | MEDLINE | ID: mdl-34996449

ABSTRACT

BACKGROUND: The application of CRISPR/Cas9 technology in human induced pluripotent stem cells (hiPSC) holds tremendous potential for basic research and cell-based gene therapy. However, the fulfillment of these promises relies on the capacity to efficiently deliver exogenous nucleic acids and harness the repair mechanisms induced by the nuclease activity in order to knock-out or repair targeted genes. Moreover, transient delivery should be preferred to avoid persistent nuclease activity and to decrease the risk of off-target events. We recently developed bacteriophage-chimeric retrovirus-like particles that exploit the properties of bacteriophage coat proteins to package exogenous RNA, and the benefits of lentiviral transduction to achieve highly efficient, non-integrative RNA delivery in human cells. Here, we investigated the potential of bacteriophage-chimeric retrovirus-like particles for the non-integrative delivery of RNA molecules in hiPSC for CRISPR/Cas9 applications. RESULTS: We found that these particles efficiently convey RNA molecules for transient expression in hiPSC, with minimal toxicity and without affecting the cell pluripotency and subsequent differentiation. We then used this system to transiently deliver in a single step the CRISPR-Cas9 components (Cas9 mRNA and sgRNA) to generate gene knockout with high indel rate (up to 85%) at multiple loci. Strikingly, when using an allele-specific sgRNA at a locus harboring compound heterozygous mutations, the targeted allele was not altered by NHEJ/MMEJ, but was repaired at high frequency using the homologous wild type allele, i.e., by interallelic gene conversion. CONCLUSIONS: Our results highlight the potential of bacteriophage-chimeric retrovirus-like particles to efficiently and safely deliver RNA molecules in hiPSC, and describe for the first time genome engineering by gene conversion in hiPSC. Harnessing this DNA repair mechanism could facilitate the therapeutic correction of human genetic disorders in hiPSC.


Subject(s)
Bacteriophages , Induced Pluripotent Stem Cells , Alleles , Bacteriophages/genetics , CRISPR-Cas Systems , Gene Conversion , Gene Editing/methods , Gene Knockout Techniques , Humans , Induced Pluripotent Stem Cells/metabolism , RNA/metabolism , Retroviridae/genetics
4.
Stem Cell Res ; 56: 102550, 2021 10.
Article in English | MEDLINE | ID: mdl-34624616

ABSTRACT

Evidence highlights the concept of multiple trajectories leading to COPD. Early-life events (i.e., in utero lung development) may influence the maximally attained lung function and increase the risk to develop COPD. Human pluripotent stem cells (hiPSC) represent a unique opportunity to model lung development. We generated hiPSC lines from four highly characterized COPD patients with early onset and severe phenotype. Peripheral blood mononuclear cells (PBMCs) were reprogrammed using integration-free Sendai Virus. The cell lines had normal karyotype, expressed pluripotency hallmarks, and differentiated into the three primary germ layers. These lines offer a tool to study early-life origins of COPD.


Subject(s)
Induced Pluripotent Stem Cells , Pulmonary Disease, Chronic Obstructive , Cell Differentiation , Cellular Reprogramming , Humans , Leukocytes, Mononuclear , Sendai virus
5.
ERJ Open Res ; 7(2)2021 Apr.
Article in English | MEDLINE | ID: mdl-33855061

ABSTRACT

Chronic obstructive pulmonary disease (COPD) is a common and preventable airway disease causing significant worldwide mortality and morbidity. Lifetime exposure to tobacco smoking and environmental particles are the two major risk factors. Over recent decades, COPD has become a growing public health problem with an increase in incidence. COPD is defined by airflow limitation due to airway inflammation and small airway remodelling coupled to parenchymal lung destruction. Most patients exhibit neutrophil-predominant airway inflammation combined with an increase in macrophages and CD8+ T-cells. Asthma is a heterogeneous chronic inflammatory airway disease. The most studied subtype is type 2 (T2) high eosinophilic asthma, for which there are an increasing number of biologic agents developed. However, both asthma and COPD are complex and share common pathophysiological mechanisms. They are known as overlapping syndromes as approximately 40% of patients with COPD present an eosinophilic airway inflammation. Several studies suggest a putative role of eosinophilia in lung function decline and COPD exacerbation. Recently, pharmacological agents targeting eosinophilic traits in uncontrolled eosinophilic asthma, especially monoclonal antibodies directed against interleukins (IL-5, IL-4, IL-13) or their receptors, have shown promising results. This review examines data on the rationale for such biological agents and assesses efficacy in T2-endotype COPD patients.

6.
Stem Cell Res ; 49: 102037, 2020 12.
Article in English | MEDLINE | ID: mdl-33099111

ABSTRACT

Human pluripotent stem cells (hiPSC) are highly valuable tools to model lung development and chronic bronchial diseases. We generated a hiPSC line from a highly characterized 40-year-old healthy male nonsmoking donor. Peripheral blood mononuclear cells (PBMCs) were reprogrammed using integration-free Sendai Virus. The cell line had normal karyotype, expressed pluripotency hallmarks, and differentiated into the three primary germ layers. The reported UHOMi002-A iPSC line may be used as a control to model lung development, study human chronic bronchial diseases and drug testing.


Subject(s)
Induced Pluripotent Stem Cells , Adult , Cell Differentiation , Cellular Reprogramming , Humans , Karyotype , Leukocytes, Mononuclear , Male , Transcription Factors/genetics
7.
Cells ; 9(5)2020 05 25.
Article in English | MEDLINE | ID: mdl-32466123

ABSTRACT

Recent advances in genome engineering based on the CRISPR/Cas9 technology have revolutionized our ability to manipulate genomic DNA. Its use in human pluripotent stem cells (hPSCs) has allowed a wide range of mutant cell lines to be obtained at an unprecedented rate. The combination of these two groundbreaking technologies has tremendous potential, from disease modeling to stem cell-based therapies. However, the generation, screening and molecular characterization of these cell lines remain a cumbersome and multi-step endeavor. Here, we propose a pipeline of strategies to efficiently generate, sub-clone, and characterize CRISPR/Cas9-edited hPSC lines in the function of the introduced mutation (indels, point mutations, insertion of large constructs, deletions).


Subject(s)
CRISPR-Associated Protein 9/metabolism , CRISPR-Cas Systems/genetics , Pluripotent Stem Cells/metabolism , Transgenes , Base Sequence , Gene Knock-In Techniques , Humans , INDEL Mutation/genetics
8.
Med Sci (Paris) ; 36(4): 382-388, 2020 Apr.
Article in French | MEDLINE | ID: mdl-32356715

ABSTRACT

As burden of chronic respiratory diseases is constantly increasing, improving in vitro lung models is essential in order to reproduce as closely as possible the complex pulmonary architecture, responsible for oxygen uptake and carbon dioxide clearance. The study of diseases that affect the respiratory system has benefited from in vitro reconstructions of the respiratory epithelium with inserts in air/liquid interface (2D) or in organoids able to mimic up to the arborescence of the respiratory tree (3D). Recent development in the fields of pluripotent stem cells-derived organoids and genome editing technologies has provided new insights to better understand pulmonary diseases and to find new therapeutic perspectives.


TITLE: Les organoïdes pulmonaires. ABSTRACT: L'impact en santé publique des pathologies respiratoires chroniques ne cesse de croître. Dans ce contexte, il paraît indispensable d'améliorer les modèles d'études du poumon afin de reproduire au plus proche l'architecture pulmonaire complexe, garante des fonctions d'oxygénation et d'épuration du gaz carbonique. Les connaissances actuelles en physiopathologie respiratoire résultent en partie des études de modèles de reconstitution d'épithélium bronchique in vitro à partir de cellules primaires, en deux dimensions sur des inserts, ou en trois dimensions, en organoïdes mimant jusqu'à l'arborescence pulmonaire. Le développement de ces modèles in vitro a connu un nouvel essor grâce aux organoïdes pulmonaires issus de cellules souches pluripotentes et la démocratisation des outils d'édition du génome. Ces apports technologiques récents offrent de nouvelles perspectives en matière de thérapeutiques ou de compréhension physiopathologique et pourraient, dans le futur, ouvrir les portes de la médecine régénératrice pulmonaire.


Subject(s)
Cell Culture Techniques , Lung/cytology , Organoids/cytology , Alveolar Epithelial Cells/cytology , Alveolar Epithelial Cells/physiology , Animals , Bioengineering/methods , Bioengineering/trends , Carbon Dioxide/pharmacology , Carbon Dioxide/physiology , Cell Culture Techniques/methods , Cell Culture Techniques/trends , Cells, Cultured , Gene Editing/methods , Gene Editing/trends , Humans , Lung/pathology , Lung/physiology , Models, Biological , Organoids/pathology , Organoids/physiology , Oxygen/pharmacology , Oxygen/physiology , Pulmonary Gas Exchange/physiology , Respiratory Mucosa/cytology , Respiratory Mucosa/drug effects , Tissue Scaffolds/chemistry
9.
Stem Cell Reports ; 14(1): 1-8, 2020 01 14.
Article in English | MEDLINE | ID: mdl-31902703

ABSTRACT

Genomic integrity of human pluripotent stem cells (hPSCs) is essential for research and clinical applications. However, genetic abnormalities can accumulate during hPSC generation and routine culture and following gene editing. Their occurrence should be regularly monitored, but the current assays to assess hPSC genomic integrity are not fully suitable for such regular screening. To address this issue, we first carried out a large meta-analysis of all hPSC genetic abnormalities reported in more than 100 publications and identified 738 recurrent genetic abnormalities (i.e., overlapping abnormalities found in at least five distinct scientific publications). We then developed a test based on the droplet digital PCR technology that can potentially detect more than 90% of these hPSC recurrent genetic abnormalities in DNA extracted from culture supernatant samples. This test can be used to routinely screen genomic integrity in hPSCs.


Subject(s)
Genetic Variation , Pluripotent Stem Cells/cytology , Pluripotent Stem Cells/metabolism , Biomarkers , Cell Culture Techniques , Cell Differentiation/genetics , Culture Media, Conditioned , Gene Editing , Gene Expression Profiling , High-Throughput Nucleotide Sequencing , Humans , Immunophenotyping , Real-Time Polymerase Chain Reaction
10.
Stem Cell Res ; 33: 15-19, 2018 12.
Article in English | MEDLINE | ID: mdl-30296669

ABSTRACT

Primary Ciliary Dyskinesia (PCD) is a rare heterogeneous genetic disorder affecting motile cilia structure and function leading to lung disease. We generated induced pluripotent stem cells (iPSCs) from dermal fibroblasts of a female PCD patient carrying disease-causing variants in the CCDC40 gene. Reprogramming was performed with the human OSKM transcription factors using the Sendai-virus delivery system. The resulting transgene free iPSCs had normal karyotype, expressed pluripotency markers, could differentiate into the three germ layers in vivo and retained the disease-causing CCDC40 mutations. This iPSC line could be useful to model PCD disease and test gene therapy strategies. Resource Table.


Subject(s)
Ciliary Motility Disorders/genetics , Induced Pluripotent Stem Cells/metabolism , Proteins/genetics , Adult , Female , Humans , Mutation
11.
Am J Respir Cell Mol Biol ; 59(6): 672-683, 2018 12.
Article in English | MEDLINE | ID: mdl-30230352

ABSTRACT

Primary ciliary dyskinesia (PCD) is a rare and heterogeneous genetic disorder that affects the structure and function of motile cilia. In the airway epithelium, impaired ciliary motion results in reduced or absent mucociliary clearance that leads to the appearance of chronic airway infection, sinusitis, and bronchiectasis. Currently, there is no effective treatment for PCD, and research is limited by the lack of convenient models to study this disease and investigate innovative therapies. Furthermore, the high heterogeneity of PCD genotypes is likely to hinder the development of a single therapy for all patients. The generation of patient-derived, induced pluripotent stem cells, and their differentiation into airway epithelium, as well as genome editing technologies, could represent major tools for in vitro PCD modeling and for developing personalized therapies. Here, we review PCD pathogenesis and then discuss how human induced pluripotent stem cells could be used to model this disease for the development of innovative, patient-specific biotherapies.


Subject(s)
Cell- and Tissue-Based Therapy , Ciliary Motility Disorders/pathology , Ciliary Motility Disorders/therapy , Induced Pluripotent Stem Cells/cytology , Precision Medicine , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...