Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
1.
Am J Trop Med Hyg ; 109(1): 22-31, 2023 07 05.
Article in English | MEDLINE | ID: mdl-37253442

ABSTRACT

Typhoid fever burden can vary over time. Long-term data can inform prevention strategies; however, such data are lacking in many African settings. We reexamined typhoid fever incidence and antimicrobial resistance (AMR) over a 10-year period in Kibera, a densely populated urban informal settlement where a high burden has been previously described. We used data from the Population Based Infectious Diseases Surveillance platform to estimate crude and adjusted incidence rates and prevalence of AMR in nearly 26,000 individuals of all ages. Demographic and healthcare-seeking information was collected through household visits. Blood cultures were processed for patients with acute fever or lower respiratory infection. Between 2010 and 2019, 16,437 participants were eligible for blood culture and 11,848 (72.1%) had a culture performed. Among 11,417 noncontaminated cultures (96.4%), 237 grew Salmonella enterica serovar Typhi (2.1%). Overall crude and adjusted incidences were 95 and 188 cases per 100,000 person-years of observation (pyo), respectively. Annual crude incidence varied from 144 to 233 between 2010 and 2012 and from 9 to 55 between 2013 and 2018 and reached 130 per 100,000 pyo in 2019. Children 5-9 years old had the highest overall incidence (crude, 208; adjusted, 359 per 100,000 pyo). Among isolates tested, 156 of 217 were multidrug resistant (resistant to chloramphenicol, ampicillin, and trimethoprim/sulfamethoxazole [71.9%]) and 6 of 223 were resistant to ciprofloxacin (2.7%). Typhoid fever incidence resurged in 2019 after a prolonged period of low rates, with the highest incidence among children. Typhoid fever control measures, including vaccines, could reduce morbidity in this setting.


Subject(s)
Typhoid Fever , Child , Humans , Child, Preschool , Typhoid Fever/epidemiology , Incidence , Kenya/epidemiology , Salmonella typhi , Ciprofloxacin/therapeutic use , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use
2.
BMC Public Health ; 19(Suppl 3): 477, 2019 May 10.
Article in English | MEDLINE | ID: mdl-32326916

ABSTRACT

Since 1979, multiple CDC Kenya programs have supported the development of diagnostic expertise and laboratory capacity in Kenya. In 2004, CDC's Global Disease Detection (GDD) program within the Division of Global Health Protection in Kenya (DGHP-Kenya) initiated close collaboration with Kenya Medical Research Institute (KEMRI) and developed a laboratory partnership called the Diagnostic and Laboratory Systems Program (DLSP). DLSP built onto previous efforts by malaria, human immunodeficiency virus (HIV) and tuberculosis (TB) programs and supported the expansion of the diagnostic expertise and capacity in KEMRI and the Ministry of Health. First, DLSP developed laboratory capacity for surveillance of diarrheal, respiratory, zoonotic and febrile illnesses to understand the etiology burden of these common illnesses and support evidenced-based decisions on vaccine introductions and recommendations in Kenya. Second, we have evaluated and implemented new diagnostic technologies such as TaqMan Array Cards (TAC) to detect emerging or reemerging pathogens and have recently added a next generation sequencer (NGS). Third, DLSP provided rapid laboratory diagnostic support for outbreak investigation to Kenya and regional countries. Fourth, DLSP has been assisting the Kenya National Public Health laboratory-National Influenza Center and microbiology reference laboratory to obtain World Health Organization (WHO) certification and ISO15189 accreditation respectively. Fifth, we have supported biosafety and biosecurity curriculum development to help Kenyan laboratories safely and appropriately manage infectious pathogens. These achievements, highlight how in collaboration with existing CDC programs working on HIV, tuberculosis and malaria, the Global Health Security Agenda can have significantly improve public health in Kenya and the region. Moreover, Kenya provides an example as to how laboratory science can help countries detect and control of infectious disease outbreaks and other public health threats more rapidly, thus enhancing global health security.


Subject(s)
Disease Outbreaks/prevention & control , Global Health , Laboratories/organization & administration , Public Health Administration/methods , Capacity Building/organization & administration , Humans , Kenya
3.
Am J Trop Med Hyg ; 98(6): 1876-1879, 2018 06.
Article in English | MEDLINE | ID: mdl-29692313

ABSTRACT

The prevalence of hepatitis C virus (HCV) infection in the Kenyan population has not been previously determined. We estimated the Kenyan HCV prevalence in HIV-negative persons aged 15-64 years. This is a retrospective cross-sectional study using data from the 2007 Kenya AIDS Indicator Survey-a nationally representative sample of 15,853 persons aged 15-64 years who completed a health interview and provided a blood specimen. Of the 1,091 randomly selected participants, 50 tested positive for HCV antibody using the automated chemiluminescence immunoassay, corresponding to a weighted HCV antibody positivity rate of 4.4% (95% confidence interval: 3.3-5.9%) or 848,000 (range: 634,000-1,100,000) persons. Hepatitis C virus RNA, a marker for current infection, was not detected in any of the tested antibody-positive specimens. The high HCV antibody prevalence together with no current infection suggests that some HCV antibody serologic testing in Kenya may result in false positives whereas others may be because of spontaneous viral clearance.


Subject(s)
Hepacivirus/immunology , Hepatitis C Antibodies/blood , Hepatitis C/epidemiology , Adolescent , Adult , Cross-Sectional Studies , Female , HIV Seronegativity , Hepacivirus/isolation & purification , Hepatitis C/virology , Humans , Kenya/epidemiology , Male , Middle Aged , Prevalence , Retrospective Studies , Surveys and Questionnaires , Young Adult
4.
PLoS One ; 12(12): e0189712, 2017.
Article in English | MEDLINE | ID: mdl-29287070

ABSTRACT

INTRODUCTION: In low-resource settings, empiric case management of febrile illness is routine as a result of limited access to laboratory diagnostics. The use of comprehensive fever syndromic surveillance, with enhanced clinical microbiology, advanced diagnostics and more robust epidemiologic investigation, could enable healthcare providers to offer a differential diagnosis of fever syndrome and more appropriate care and treatment. METHODS: We conducted a year-long exploratory study of fever syndrome among patients ≥ 1 year if age, presenting to clinical settings with an axillary temperature of ≥37.5°C and symptomatic onset of ≤5 days. Blood and naso-pharyngeal/oral-pharyngeal (NP/OP) specimens were collected and analyzed, respectively, using AFI and respiratory TaqMan Array Cards (TAC) for multi-pathogen detection of 57 potential causative agents. Furthermore, we examined numerous epidemiologic correlates of febrile illness, and conducted demographic, clinical, and behavioral domain-specific multivariate regression to statistically establish associations with agent detection. RESULTS: From 15 September 2014-13 September 2015, 1007 febrile patients were enrolled, and 997 contributed an epidemiologic survey, including: 14% (n = 139) 1<5yrs, 19% (n = 186) 5-14yrs, and 67% (n = 672) ≥15yrs. AFI TAC and respiratory TAC were performed on 842 whole blood specimens and 385 NP/OP specimens, respectively. Of the 57 agents surveyed, Plasmodium was the most common agent detected. AFI TAC detected nucleic acid for one or more of seven microbial agents in 49% of AFI blood samples, including: Plasmodium (47%), Leptospira (3%), Bartonella (1%), Salmonella enterica (1%), Coxiella burnetii (1%), Rickettsia (1%), and West Nile virus (1%). Respiratory TAC detected nucleic acid for 24 different microbial agents, including 12 viruses and 12 bacteria. The most common agents detected among our surveyed population were: Haemophilus influenzae (67%), Streptococcus pneumoniae (55%), Moraxella catarrhalis (39%), Staphylococcus aureus (37%), Pseudomonas aeruginosa (36%), Human Rhinovirus (25%), influenza A (24%), Klebsiella pneumoniae (14%), Enterovirus (15%) and group A Streptococcus (12%). Our epidemiologic investigation demonstrated both age and symptomatic presentation to be associated with a number of detected agents, including, but not limited to, influenza A and Plasmodium. Linear regression of fully-adjusted mean cycle threshold (Ct) values for Plasmodium also identified statistically significant lower mean Ct values for older children (20.8), patients presenting with severe fever (21.1) and headache (21.5), as well as patients admitted for in-patient care and treatment (22.4). CONCLUSIONS: This study is the first to employ two syndromic TaqMan Array Cards for the simultaneous survey of 57 different organisms to better characterize the type and prevalence of detected agents among febrile patients. Additionally, we provide an analysis of the association between adjusted mean Ct values for Plasmodium and key clinical and demographic variables, which may further inform clinical decision-making based upon intensity of infection, as observed across endemic settings of sub-Saharan Africa.


Subject(s)
Fever/diagnosis , Fever/epidemiology , Adolescent , Adult , Aged , Child , Child, Preschool , Cross-Sectional Studies , Female , Fever/microbiology , Fever/virology , Humans , Infant , Male , Middle Aged , Population Surveillance , Tanzania/epidemiology , Young Adult
5.
Lancet Glob Health ; 5(3): e310-e323, 2017 03.
Article in English | MEDLINE | ID: mdl-28193398

ABSTRACT

BACKGROUND: Available incidence data for invasive salmonella disease in sub-Saharan Africa are scarce. Standardised, multicountry data are required to better understand the nature and burden of disease in Africa. We aimed to measure the adjusted incidence estimates of typhoid fever and invasive non-typhoidal salmonella (iNTS) disease in sub-Saharan Africa, and the antimicrobial susceptibility profiles of the causative agents. METHODS: We established a systematic, standardised surveillance of blood culture-based febrile illness in 13 African sentinel sites with previous reports of typhoid fever: Burkina Faso (two sites), Ethiopia, Ghana, Guinea-Bissau, Kenya, Madagascar (two sites), Senegal, South Africa, Sudan, and Tanzania (two sites). We used census data and health-care records to define study catchment areas and populations. Eligible participants were either inpatients or outpatients who resided within the catchment area and presented with tympanic (≥38·0°C) or axillary temperature (≥37·5°C). Inpatients with a reported history of fever for 72 h or longer were excluded. We also implemented a health-care utilisation survey in a sample of households randomly selected from each study area to investigate health-seeking behaviour in cases of self-reported fever lasting less than 3 days. Typhoid fever and iNTS disease incidences were corrected for health-care-seeking behaviour and recruitment. FINDINGS: Between March 1, 2010, and Jan 31, 2014, 135 Salmonella enterica serotype Typhi (S Typhi) and 94 iNTS isolates were cultured from the blood of 13 431 febrile patients. Salmonella spp accounted for 33% or more of all bacterial pathogens at nine sites. The adjusted incidence rate (AIR) of S Typhi per 100 000 person-years of observation ranged from 0 (95% CI 0-0) in Sudan to 383 (274-535) at one site in Burkina Faso; the AIR of iNTS ranged from 0 in Sudan, Ethiopia, Madagascar (Isotry site), and South Africa to 237 (178-316) at the second site in Burkina Faso. The AIR of iNTS and typhoid fever in individuals younger than 15 years old was typically higher than in those aged 15 years or older. Multidrug-resistant S Typhi was isolated in Ghana, Kenya, and Tanzania (both sites combined), and multidrug-resistant iNTS was isolated in Burkina Faso (both sites combined), Ghana, Kenya, and Guinea-Bissau. INTERPRETATION: Typhoid fever and iNTS disease are major causes of invasive bacterial febrile illness in the sampled locations, most commonly affecting children in both low and high population density settings. The development of iNTS vaccines and the introduction of S Typhi conjugate vaccines should be considered for high-incidence settings, such as those identified in this study. FUNDING: Bill & Melinda Gates Foundation.


Subject(s)
Salmonella Infections/epidemiology , Salmonella , Typhoid Fever/epidemiology , Adolescent , Africa South of the Sahara/epidemiology , Child , Child, Preschool , Drug Resistance, Multiple , Family Characteristics , Female , Fever/etiology , Fever/microbiology , Humans , Incidence , Male , Salmonella/isolation & purification , Salmonella Infections/microbiology , Typhoid Fever/microbiology
6.
Am J Trop Med Hyg ; 95(2): 348-53, 2016 08 03.
Article in English | MEDLINE | ID: mdl-27273644

ABSTRACT

Current estimates put the prevalence of hepatitis B virus (HBV) infection in Kenya at 5-8%. We determined the HBV infection prevalence in the human immunodeficiency virus (HIV)-negative Kenyan adult and adolescent population based on samples collected from a national survey. We analyzed data from HIV-negative participants in the 2007 Kenya AIDS Indicator Survey to estimate the HBV infection prevalence. We defined past or present HBV infection as presence of total hepatitis B core antibody (HBcAb), and chronic HBV infection (CHBI) as presence of both total HBcAb and hepatitis B surface antigen (HBsAg). We calculated crude and adjusted odds of HBV infection by demographic characteristics and risk factors using logistic regression analyses. Of 1,091 participants aged 15-64 years, approximately 31.5% (95% confidence interval [CI] = 28.0-35.3%) had exposure to HBV, corresponding to approximately 6.1 million (CI = 5.4-6.8 million) with past or present HBV infection. The estimated prevalence of CHBI was 2.1% (95% CI = 1.4-3.1%), corresponding to approximately 398,000 (CI = 261,000-602,000) with CHBI. CHBI is a major public health problem in Kenya, affecting approximately 400,000 persons. Knowing the HBV infection prevalence at baseline is important for planning and public health policy decision making and for monitoring the impact of viral hepatitis prevention programs.


Subject(s)
Hepatitis B Antibodies/blood , Hepatitis B Core Antigens/blood , Hepatitis B Surface Antigens/blood , Hepatitis B virus/isolation & purification , Hepatitis B, Chronic/epidemiology , Adolescent , Adult , Female , Health Surveys , Hepatitis B virus/immunology , Hepatitis B, Chronic/diagnosis , Hepatitis B, Chronic/immunology , Hepatitis B, Chronic/virology , Humans , Kenya/epidemiology , Male , Middle Aged , Odds Ratio , Prevalence , Risk Factors
7.
Vaccine ; 34(23): 2593-601, 2016 05 17.
Article in English | MEDLINE | ID: mdl-27079931

ABSTRACT

INTRODUCTION: Every year the World Health Organization (WHO) recommends which influenza virus strains should be included in a northern hemisphere (NH) and a southern hemisphere (SH) influenza vaccine. To determine the best vaccine formulation for Kenya, we compared influenza viruses collected in Kenya from April 2007 to May 2013 to WHO vaccine strains. METHODS: We collected nasopharyngeal and oropharyngeal (NP/OP) specimens from patients with respiratory illness, tested them for influenza, isolated influenza viruses from a proportion of positive specimens, tested the isolates for antigenic relatedness to vaccine strains, and determined the percentage match between circulating viruses and SH or NH influenza vaccine composition and schedule. RESULTS: During the six years, 7.336 of the 60,072 (12.2%) NP/OP specimens we collected were positive for influenza: 30,167 specimens were collected during the SH seasons and 3717 (12.3%) were positive for influenza; 2903 (78.1%) influenza A, 902 (24.2%) influenza B, and 88 (2.4%) influenza A and B positive specimens. We collected 30,131 specimens during the NH seasons and 3978 (13.2%) were positive for influenza; 3181 (80.0%) influenza A, 851 (21.4%) influenza B, and 54 (1.4%) influenza A and B positive specimens. Overall, 362/460 (78.7%) isolates from the SH seasons and 316/338 (93.5%) isolates from the NH seasons were matched to the SH and the NH vaccine strains, respectively (p<0.001). Overall, 53.6% and 46.4% SH and NH vaccines, respectively, matched circulating strains in terms of vaccine strains and timing. CONCLUSION: In six years of surveillance in Kenya, influenza circulated at nearly equal levels during the SH and the NH influenza seasons. Circulating viruses were matched to vaccine strains. The vaccine match decreased when both vaccine strains and timing were taken into consideration. Either vaccine formulation could be suitable for use in Kenya but the optimal timing for influenza vaccination needs to be determined.


Subject(s)
Influenza A virus/isolation & purification , Influenza B virus/isolation & purification , Influenza Vaccines/chemistry , Influenza, Human/prevention & control , Humans , Immunization Programs , Influenza A virus/classification , Influenza B virus/classification , Influenza Vaccines/therapeutic use , Kenya , Nasopharynx/virology
8.
Am J Trop Med Hyg ; 94(1): 43-51, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26598574

ABSTRACT

Diseases of zoonotic origin contribute to the burden of febrile illnesses in developing countries. We evaluated serologic evidence of exposure to Bacillus anthracis, Brucella spp., spotted fever group rickettsioses (SFGR), and typhus group rickettsioses (TGR) from samples of persons aged 15-64 years collected during a nationwide human immunodeficiency virus (HIV) serosurvey conducted in 2007 in Kenya. The seropositivity observed for pathogens was B. anthracis 11.3%, Brucella spp. 3.0%, SFGR 23.3%, and TGR 0.6%. On univariate analysis, seropositivity for each pathogen was significantly associated with the following risk factors: B. anthracis with province of residence; Brucella spp. with sex, education level, and wealth; SFGR with age, education level, wealth, and province of residence; and TGR with province of residence. On multivariate analysis, seropositivity remained significantly associated with wealth and province for B. anthracis; with sex and age for Brucella spp; and with sex, education level, and province of residence for SFGR whereas TGR had no significance. High IgG seropositivity to these zoonotic pathogens (especially, B. anthracis and SFGR) suggests substantial exposure. These pathogens should be considered in the differential diagnosis of febrile illness in Kenya.


Subject(s)
Anthrax/epidemiology , Antibodies, Bacterial/blood , Brucellosis/epidemiology , Rickettsiaceae Infections/epidemiology , Seroepidemiologic Studies , Zoonoses , Adolescent , Adult , Animals , Anthrax/blood , Bacillus anthracis , Brucella , Brucellosis/blood , Demography , Female , Humans , Kenya/epidemiology , Male , Middle Aged , Rickettsiaceae , Rickettsiaceae Infections/blood , Risk Factors , Socioeconomic Factors , Young Adult
9.
Clin Infect Dis ; 61 Suppl 4: S302-9, 2015 Nov 01.
Article in English | MEDLINE | ID: mdl-26449945

ABSTRACT

BACKGROUND: Invasive infections with nontyphoidal Salmonella (NTS) lead to bacteremia in children and adults and are an important cause of illness in Africa; however, few data on the burden of NTS bacteremia are available. We sought to determine the burden of invasive NTS disease in a rural and urban setting in Kenya. METHODS: We conducted the study in a population-based surveillance platform in a rural setting in western Kenya (Lwak), and an informal urban settlement in Nairobi (Kibera) from 2009 to 2014. We obtained blood culture specimens from participants presenting with acute lower respiratory tract illness or acute febrile illness to a designated outpatient facility in each site, or any hospital admission for a potentially infectious cause (rural site only). Incidence was calculated using a defined catchment population and adjusting for specimen collection and healthcare-seeking practices. RESULTS: A total of 12 683 and 9524 blood cultures were analyzed from Lwak and Kibera, respectively. Of these, 428 (3.4%) and 533 (5.6%) grew a pathogen; among those, 208 (48.6%) and 70 (13.1%) were positive for NTS in Lwak and Kibera, respectively. Overall, the adjusted incidence of invasive NTS disease was higher in Lwak (839.4 per 100,000 person-years of observation [PYO]) than in Kibera (202.5 per 100,000 PYO). The highest adjusted incidences were observed in children <5 years of age (Lwak 3914.3 per 100,000 PYO and Kibera 997.9 per 100,000 PYO). The highest adjusted annual incidence was 1927.3 per 100,000 PYO (in 2010) in Lwak and 220.5 per 100,000 PYO (in 2011) in Kibera; the lowest incidences were 303.3 and 62.5 per 100,000 PYO, respectively (in 2012). In both sites, invasive NTS disease incidence generally declined over the study period. CONCLUSIONS: We observed an extremely high burden of invasive NTS disease in a rural area of Kenya and a lesser, but still substantial, burden in an urban slum. Although the incidences in both sites declined during the study period, invasive NTS infections remain an important cause of morbidity in these settings, particularly among children <5 years old.


Subject(s)
Salmonella Infections/epidemiology , Salmonella enterica/isolation & purification , Adolescent , Adult , Age Factors , Child , Child, Preschool , Cost of Illness , Epidemiological Monitoring , Female , Humans , Incidence , Infant , Kenya/epidemiology , Male , Retrospective Studies , Rural Population , Salmonella Infections/blood , Salmonella Infections/microbiology , Salmonella Infections/mortality , Salmonella enterica/classification , Salmonella enterica/genetics , Time Factors , Urban Population
10.
BMC Infect Dis ; 15: 95, 2015 Feb 25.
Article in English | MEDLINE | ID: mdl-25879805

ABSTRACT

BACKGROUND: Reducing acute respiratory infection burden in children in Africa remains a major priority and challenge. We analyzed data from population-based infectious disease surveillance for severe acute respiratory illness (SARI) among children <5 years of age in Kibera, a densely populated urban slum in Nairobi, Kenya. METHODS: Surveillance was conducted among a monthly mean of 5,874 (range = 5,778-6,411) children <5 years old in two contiguous villages in Kibera. Participants had free access to the study clinic and their health events and utilization were noted during biweekly home visits. Patients meeting criteria for SARI (WHO-defined severe or very severe pneumonia, or oxygen saturation <90%) from March 1, 2007-February 28, 2011 had blood cultures processed for bacteria, and naso- and oro- pharyngeal swabs collected for quantitative real-time reverse transcription polymerase chain reaction testing for influenza viruses, parainfluenza viruses (PIV), respiratory syncytial virus (RSV), adenovirus, and human metapneumovirus (hMPV). Swabs collected during January 1, 2009 - February 28, 2010 were also tested for rhinoviruses, enterovirus, parechovirus, Mycoplasma pneumoniae, and Legionella species. Swabs were collected for simultaneous testing from a selected group of control-children visiting the clinic without recent respiratory or diarrheal illnesses. RESULTS: SARI overall incidence was 12.4 cases/100 person-years of observation (PYO) and 30.4 cases/100 PYO in infants. When comparing detection frequency in swabs from 815 SARI cases and 115 healthy controls, only RSV and influenza A virus were significantly more frequently detected in cases, although similar trends neared statistical significance for PIV, adenovirus and hMPV. The incidence for RSV was 2.8 cases/100 PYO and for influenza A was 1.0 cases/100 PYO. When considering all PIV, the rate was 1.1 case/100 PYO and the rate per 100 PYO for SARI-associated disease was 1.5 for adenovirus and 0.9 for hMPV. RSV and influenza A and B viruses were estimated to account for 16.2% and 6.7% of SARI cases, respectively; when taken together, PIV, adenovirus, and hMPV may account for >20% additional cases. CONCLUSIONS: Influenza viruses and RSV (and possibly PIV, hMPV and adenoviruses) are important pathogens to consider when developing technologies and formulating strategies to treat and prevent SARI in children.


Subject(s)
Legionellosis/epidemiology , Pneumonia, Mycoplasma/epidemiology , Pneumonia, Viral/epidemiology , Population Density , Poverty Areas , Urban Population/statistics & numerical data , Acute Disease , Adenoviridae/genetics , Adenoviridae/isolation & purification , Adenoviridae Infections/epidemiology , Adenoviridae Infections/virology , Child, Preschool , Epidemiological Monitoring , Female , Humans , Incidence , Infant , Influenza A virus/genetics , Influenza A virus/isolation & purification , Influenza, Human/epidemiology , Influenza, Human/virology , Kenya/epidemiology , Legionella/isolation & purification , Legionellosis/microbiology , Male , Metapneumovirus/genetics , Metapneumovirus/isolation & purification , Mycoplasma pneumoniae/isolation & purification , Orthomyxoviridae/genetics , Orthomyxoviridae/isolation & purification , Parainfluenza Virus 1, Human/genetics , Parainfluenza Virus 1, Human/isolation & purification , Parainfluenza Virus 2, Human/genetics , Parainfluenza Virus 2, Human/isolation & purification , Paramyxoviridae Infections/epidemiology , Paramyxoviridae Infections/virology , Picornaviridae Infections/epidemiology , Picornaviridae Infections/virology , Pneumonia, Mycoplasma/microbiology , Pneumonia, Viral/virology , Real-Time Polymerase Chain Reaction , Respiratory Syncytial Virus Infections/epidemiology , Respiratory Syncytial Virus Infections/virology , Respiratory Syncytial Viruses/genetics , Respiratory Syncytial Viruses/isolation & purification , Respiratory Tract Infections/epidemiology , Respiratory Tract Infections/virology , Respirovirus Infections/epidemiology , Respirovirus Infections/virology , Rhinovirus/genetics , Rhinovirus/isolation & purification , Rubulavirus Infections/epidemiology , Rubulavirus Infections/virology
11.
J Microbiol Methods ; 107: 222-6, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25448378

ABSTRACT

Several commercial assays are now available to detect the nucleic acid of multiple respiratory pathogens from a single specimen. Head-to-head comparisons of such assays using a single set of standard specimens provide additional information about key assay parameters such as sensitivity, specificity and lower limits of detection, and help to inform the decision regarding which method to use. We evaluated two real-time PCR platforms: the Fast-track Diagnostics® (FTD) multiplex respiratory panel and a TaqMan array card (TAC) for simultaneous uniplex detection of multiple respiratory pathogens. Two sets of samples were used to evaluate the assays. One set was created by spiking pooled nasal wash or phosphate buffered saline with specified volumes of known concentrations of virus and/or bacteria. Clinical nasal wash specimens from children with lower respiratory tract illness comprised the other set. Thirteen pathogen targets were compared between the two platforms. Testing with a validation panel of spiked samples revealed a sensitivity of 96.1% and 92.9% for the FTD and TAC assays, respectively. Specificity could not be reliably calculated due to a suspected contamination of the sample substrate. Inter-assay agreement was high (> 95%) for most targets. Previously untested clinical specimens tested by both assays revealed a high percent agreement (> 95%) for all except rhinovirus, enterovirus and Streptococcus pneumoniae. Limitations of this evaluation included extraction of the validation samples by two different methods and the evaluation of the assays in different laboratories. However, neither of these factors significantly impacted inter-assay agreement for these sets of samples, and it was demonstrated that both assays could reliably detect clinically relevant concentrations of bacterial and viral pathogens.


Subject(s)
Multiplex Polymerase Chain Reaction/methods , Real-Time Polymerase Chain Reaction/methods , Respiratory Tract Infections/diagnosis , Respiratory Tract Infections/etiology , Child, Preschool , Humans , Infant , Reproducibility of Results , Respiratory Tract Infections/microbiology , Respiratory Tract Infections/virology , Sensitivity and Specificity
12.
BMC Infect Dis ; 14: 178, 2014 Apr 01.
Article in English | MEDLINE | ID: mdl-24690157

ABSTRACT

BACKGROUND: A recent longitudinal study in the Dadaab refugee camp near the Kenya-Somalia border identified unusual biannual respiratory syncytial virus (RSV) epidemics. We characterized the genetic variability of the associated RSV strains to determine if viral diversity contributed to this unusual epidemic pattern. METHODS: For 336 RSV positive specimens identified from 2007 through 2011 through facility-based surveillance of respiratory illnesses in the camp, 324 (96.4%) were sub-typed by PCR methods, into 201 (62.0%) group A, 118 (36.4%) group B and 5 (1.5%) group A-B co-infections. Partial sequencing of the G gene (coding for the attachment protein) was completed for 290 (89.5%) specimens. These specimens were phylogenetically analyzed together with 1154 contemporaneous strains from 22 countries. RESULTS: Of the 6 epidemic peaks recorded in the camp over the period, the first and last were predominantly made up of group B strains, while the 4 in between were largely composed of group A strains in a consecutive series of minor followed by major epidemics. The Dadaab group A strains belonged to either genotype GA2 (180, 98.9%) or GA5 (2, < 1%) while all group B strains (108, 100%) belonged to BA genotype. In sequential epidemics, strains within these genotypes appeared to be of two types: those continuing from the preceding epidemics and those newly introduced. Genotype diversity was similar in minor and major epidemics. CONCLUSION: RSV strain diversity in Dadaab was similar to contemporaneous diversity worldwide, suggested both between-epidemic persistence and new introductions, and was unrelated to the unusual epidemic pattern.


Subject(s)
Epidemics , Refugees/statistics & numerical data , Respiratory Syncytial Virus Infections/epidemiology , Respiratory Syncytial Virus Infections/virology , Respiratory Syncytial Viruses/isolation & purification , Child, Preschool , Female , Genetic Variation , Genotype , Humans , Infant , Kenya/epidemiology , Male , Phylogeography , Respiratory Syncytial Viruses/classification , Respiratory Syncytial Viruses/genetics
13.
Case Rep Infect Dis ; 2013: 286347, 2013.
Article in English | MEDLINE | ID: mdl-24371531

ABSTRACT

We investigated recreational vehicle (RV) water reservoirs in response to a case of pneumonia in which Legionella pneumophila was cultured both from the patient and a RV reservoir in which he travelled. Water samples processed and cultured at the CDC according to standard protocol were positive for Legionella spp. in 4/17 (24%) faucets, 1/11 (9%) water tanks from 4/20 (20%) RVs from three different campsites. Legionella spp. that were isolated included L. pneumophila (serogroups 1 and 6), L. anisa, L. feeleii, and L. quateriensis. Environmental controls from the potable water of the three campsites were culture-negative. A survey of maintenance practices by the RV users at the campsites revealed that chlorine disinfection of the water tanks was rarely performed. To prevent the possibility of Legionella infections, RV owners should implement regular chlorine disinfection of their water tanks and follow the recommended maintenance guidelines according to their owner's manuals.

15.
J Infect Dis ; 208 Suppl 3: S207-16, 2013 Dec 15.
Article in English | MEDLINE | ID: mdl-24265480

ABSTRACT

BACKGROUND: Information on the epidemiology of respiratory syncytial virus (RSV) infection in Africa is limited for crowded urban areas and for rural areas where the prevalence of malaria is high. METHODS: At referral facilities in rural western Kenya and a Nairobi slum, we collected nasopharyngeal/oropharyngeal (NP/OP) swab specimens from patients with influenza-like illness (ILI) or severe acute respiratory illness (SARI) and from asymptomatic controls. Polymerase chain reaction assays were used for detection of viral pathogens. We calculated age-specific ratios of the odds of RSV detection among patients versus the odds among controls. Incidence was expressed as the number of episodes per 1000 person-years of observation. RESULTS: Between March 2007 and February 2011, RSV was detected in 501 of 4012 NP/OP swab specimens (12.5%) from children and adults in the rural site and in 321 of 2744 NP/OP swab specimens (11.7%) from those in the urban site. Among children aged <5 years, RSV was detected more commonly among rural children with SARI (odds ratio [OR], 2.0; 95% confidence interval [CI], 1.2-3.3), urban children with SARI (OR, 8.5; 95% CI, 3.1-23.6), and urban children with ILI (OR, 3.4; 95% CI, 1.2-9.6), compared with controls. The incidence of RSV disease was highest among infants with SARI aged <1 year (86.9 and 62.8 episodes per 1000 person-years of observation in rural and urban sites, respectively). CONCLUSIONS: An effective RSV vaccine would likely substantially reduce the burden of respiratory illness among children in rural and urban areas in Africa.


Subject(s)
Respiratory Syncytial Virus Infections/epidemiology , Respiratory Syncytial Virus, Human/isolation & purification , Respiratory Tract Infections/epidemiology , Rural Population/statistics & numerical data , Urban Population/statistics & numerical data , Adolescent , Adult , Child , Child, Preschool , Female , Humans , Incidence , Infant , Kenya/epidemiology , Male , Population Surveillance/methods , Respiratory Syncytial Virus Infections/physiopathology , Respiratory Syncytial Virus Infections/virology , Respiratory Syncytial Virus, Human/genetics , Respiratory Tract Infections/physiopathology , Respiratory Tract Infections/virology , Severity of Illness Index , Young Adult
16.
BMC Infect Dis ; 13: 291, 2013 Jun 27.
Article in English | MEDLINE | ID: mdl-23806063

ABSTRACT

BACKGROUND: During a Legionnaires' disease (LD) outbreak, combined epidemiological and environmental investigations were conducted to identify prevention recommendations for facilities where elderly residents live independently but have an increased risk of legionellosis. METHODS: Survey responses (n = 143) were used to calculate attack rates and describe transmission routes by estimating relative risk (RR) and 95% confidence intervals (95% CI). Potable water collected from five apartments of LD patients and three randomly-selected apartments of residents without LD (n = 103 samples) was cultured for Legionella. RESULTS: Eight confirmed LD cases occurred among 171 residents (attack rate = 4.7%); two visitors also developed LD. One case was fatal. The average age of patients was 70 years (range: 62-77). LD risk was lower among residents who reported tub bathing instead of showering (RR = 0.13, 95% CI: 0.02-1.09, P = 0.03). Two respiratory cultures were characterized as L. pneumophila serogroup 1, monoclonal antibody type Knoxville (1,2,3), sequence type 222. An indistinguishable strain was detected in 31 (74%) of 42 potable water samples. CONCLUSIONS: Managers of elderly-housing facilities and local public health officials should consider developing a Legionella prevention plan. When Legionella colonization of potable water is detected in these facilities, remediation is indicated to protect residents at higher risk. If LD occurs among residents, exposure reduction, heightened awareness, and clinical surveillance activities should be coordinated among stakeholders. For prompt diagnosis and effective treatment, clinicians should recognize the increased risk and atypical presentation of LD in older adults.


Subject(s)
Disease Outbreaks/statistics & numerical data , Drinking Water/microbiology , Legionella pneumophila/isolation & purification , Legionnaires' Disease/diagnosis , Legionnaires' Disease/epidemiology , Aged , Algorithms , Cohort Studies , Female , Humans , Incidence , Legionnaires' Disease/microbiology , Male , Middle Aged , Risk Factors
17.
J Clin Microbiol ; 51(6): 1740-6, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23536399

ABSTRACT

Estimates of the prevalence of Shigella spp. are limited by the suboptimal sensitivity of current diagnostic and surveillance methods. We used a quantitative PCR (qPCR) assay to detect Shigella in the stool samples of 3,533 children aged <59 months from the Gambia, Mali, Kenya, and Bangladesh, with or without moderate-to-severe diarrhea (MSD). We compared the results from conventional culture to those from qPCR for the Shigella ipaH gene. Using MSD as the reference standard, we determined the optimal cutpoint to be 2.9 × 10(4) ipaH copies per 100 ng of stool DNA for set 1 (n = 877). One hundred fifty-eight (18%) specimens yielded >2.9 × 10(4) ipaH copies. Ninety (10%) specimens were positive by traditional culture for Shigella. Individuals with ≥ 2.9 × 10(4) ipaH copies have 5.6-times-higher odds of having diarrhea than those with <2.9 × 10(4) ipaH copies (95% confidence interval, 3.7 to 8.5; P < 0.0001). Nearly identical results were found using an independent set of samples. qPCR detected 155 additional MSD cases with high copy numbers of ipaH, a 90% increase from the 172 cases detected by culture in both samples. Among a subset (n = 2,874) comprising MSD cases and their age-, gender-, and location-matched controls, the fraction of MSD cases that were attributable to Shigella infection increased from 9.6% (n = 129) for culture to 17.6% (n = 262) for qPCR when employing our cutpoint. We suggest that qPCR with a cutpoint of approximately 1.4 × 10(4) ipaH copies be the new reference standard for the detection and diagnosis of shigellosis in children in low-income countries. The acceptance of this new standard would substantially increase the fraction of MSD cases that are attributable to Shigella.


Subject(s)
Diarrhea/diagnosis , Diarrhea/epidemiology , Dysentery, Bacillary/diagnosis , Dysentery, Bacillary/epidemiology , Real-Time Polymerase Chain Reaction/methods , Shigella/isolation & purification , Antigens, Bacterial/genetics , Bacterial Proteins/genetics , Case-Control Studies , Child, Preschool , Developing Countries , Diarrhea/microbiology , Dysentery, Bacillary/microbiology , Feces/microbiology , Female , Humans , Infant , Infant, Newborn , Male , Prevalence , Sensitivity and Specificity , Shigella/genetics
18.
Int J Microbiol ; 2012: 218791, 2012.
Article in English | MEDLINE | ID: mdl-22287969

ABSTRACT

Members of the Gram-negative genus Legionella are typically found in freshwater environments, with the exception of L. longbeachae, which is present in composts and potting mixes. When contaminated aerosols are inhaled, legionellosis may result, typically as either the more serious pneumonia Legionnaires' disease or the less severe flu-like illness Pontiac fever. It is presumed that all species of the genus Legionella are capable of causing disease in humans. As a followup to a prior clinical study of legionellosis in rural Thailand, indigenous soil samples were collected proximal to cases' homes and workplaces and tested for the presence of legionellae by culture. We obtained 115 isolates from 22/39 soil samples and used sequence-based methods to identify 12 known species of Legionella represented by 87 isolates.

19.
Int J Syst Evol Microbiol ; 62(Pt 2): 284-288, 2012 Feb.
Article in English | MEDLINE | ID: mdl-21398499

ABSTRACT

A novel Legionella species was identified based on analysis of 16S rRNA and mip (macrophage infectivity potentiator) gene sequences, cellular fatty acids, isoprenoid quinones, biochemical reactions, antigens and quantitative DNA-DNA hybridization. Strain CDC-1796-JAP-E(T) was isolated from well water at the Nagasaki Municipal Medical Center, Japan. Two strains, CDC-3041-AUS-E and CDC-3558-AUS-E, were isolated from water samples during an outbreak of legionellosis in South Australia. Strain CDC-5427-OH-H was isolated from a 66-year-old female patient diagnosed with Legionnaires' disease in the US. Cells from these four strains were gram-negative, non-fluorescent, rod-shaped, and positive for alkaline phosphatase, esterase, leucine arylamidase, catalase, gelatinase, ß-lactamase and tyrosine browning assay. Phylogenetic analysis of 16S rRNA and mip genes revealed that the four strains formed a distinct cluster within the genus Legionella. The bacteria contained branched-chain fatty acids and quinones that are typical of members of the genus Legionella. Slide agglutination tests demonstrated no cross-reaction with 52 previously described members of the Legionellaceae. DNA-DNA hybridization studies indicated that DNAs from the four strains were highly related (78-84 %) but they showed 29 % relatedness to Legionella oakridgensis ATCC 33761(T) and less than 10 % to strains of other Legionella species tested. These characterizations suggest that the isolates represent a novel species, for which the name Legionella nagasakiensis sp. nov. is proposed; the type strain is CDC-1796-JAP-E(T) ( = ATCC BAA-1557(T) = JCM 15315(T)).


Subject(s)
Fresh Water/microbiology , Legionella/classification , Legionella/isolation & purification , Legionellosis/microbiology , Pneumonia, Bacterial/microbiology , Water Supply , Aged , Bacterial Proteins/genetics , Bacterial Typing Techniques , DNA, Bacterial/analysis , DNA, Ribosomal/analysis , Fatty Acids/analysis , Female , Genes, rRNA , Humans , Japan/epidemiology , Legionella/genetics , Legionella/physiology , Molecular Sequence Data , Nucleic Acid Hybridization , Peptidylprolyl Isomerase/genetics , Phylogeny , Quinones/analysis , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , South Australia/epidemiology , Species Specificity , United States/epidemiology
20.
Water Res ; 45(15): 4428-36, 2011 Oct 01.
Article in English | MEDLINE | ID: mdl-21726887

ABSTRACT

A pilot study for the Environmental Legionella Isolation Techniques Evaluation (ELITE) Program, a proficiency testing scheme for US laboratories that culture Legionella from environmental samples, was conducted September 1, 2008 through March 31, 2009. Participants (n=20) processed panels consisting of six sample types: pure and mixed positive, pure and mixed negative, pure and mixed variable. The majority (93%) of all samples (n=286) were correctly characterized, with 88.5% of samples positive for Legionella and 100% of negative samples identified correctly. Variable samples were incorrectly identified as negative in 36.9% of reports. For all samples reported positive (n=128), participants underestimated the cfu/ml by a mean of 1.25 logs with standard deviation of 0.78 logs, standard error of 0.07 logs, and a range of 3.57 logs compared to the CDC re-test value. Centering results around the interlaboratory mean yielded a standard deviation of 0.65 logs, standard error of 0.06 logs, and a range of 3.22 logs. Sampling protocol, treatment regimen, culture procedure, and laboratory experience did not significantly affect the accuracy or precision of reported concentrations. Qualitative and quantitative results from the ELITE pilot study were similar to reports from a corresponding proficiency testing scheme available in the European Union, indicating these results are probably valid for most environmental laboratories worldwide. The large enumeration error observed suggests that the need for remediation of a water system should not be determined solely by the concentration of Legionella observed in a sample since that value is likely to underestimate the true level of contamination.


Subject(s)
Bacteriological Techniques/standards , Legionella/isolation & purification , Colony Count, Microbial , Environmental Restoration and Remediation/methods , Legionella/growth & development , Pilot Projects , Program Evaluation , United States
SELECTION OF CITATIONS
SEARCH DETAIL
...