Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 83
Filter
Add more filters










Publication year range
1.
Environ Sci Technol ; 58(16): 7056-7065, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38608141

ABSTRACT

The sources and sinks of nitrous oxide, as control emissions to the atmosphere, are generally poorly constrained for most environmental systems. Initial depth-resolved analysis of nitrous oxide flux from observation wells and the proximal surface within a nitrate contaminated aquifer system revealed high subsurface production but little escape from the surface. To better understand the environmental controls of production and emission at this site, we used a combination of isotopic, geochemical, and molecular analyses to show that chemodenitrification and bacterial denitrification are major sources of nitrous oxide in this subsurface, where low DO, low pH, and high nitrate are correlated with significant nitrous oxide production. Depth-resolved metagenomes showed that consumption of nitrous oxide near the surface was correlated with an enrichment of Clade II nitrous oxide reducers, consistent with a growing appreciation of their importance in controlling release of nitrous oxide to the atmosphere. Our work also provides evidence for the reduction of nitrous oxide at a pH of 4, well below the generally accepted limit of pH 5.


Subject(s)
Nitrous Oxide , Nitrous Oxide/metabolism , Bacteria/metabolism , Oxidoreductases/metabolism , Denitrification
2.
Trends Biotechnol ; 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-38184438

ABSTRACT

Algal-bacterial interactions are ubiquitous in both natural and industrial systems, and the characterization of these interactions has been reinvigorated by potential applications in biosystem productivity. Different growth conditions can be used for operational functions, such as the use of low-quality water or high pH/alkalinity, and the altered operating conditions likely constrain microbial community structure and function in unique ways. However, research is necessary to better understand whether consortia can be designed to improve the productivity, processing, and sustainability of industrial-scale cultivations through different controls that can constrain microbial interactions for maximal light-driven outputs. The review highlights current knowledge and gaps for relevant operating conditions, as well as suggestions for near-term and longer-term improvements for large-scale cultivation and polyculture engineering.

3.
Nat Microbiol ; 9(2): 490-501, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38212658

ABSTRACT

Community assembly describes how different ecological processes shape microbial community composition and structure. How environmental factors impact community assembly remains elusive. Here we sampled microbial communities and >200 biogeochemical variables in groundwater at the Oak Ridge Field Research Center, a former nuclear waste disposal site, and developed a theoretical framework to conceptualize the relationships between community assembly processes and environmental stresses. We found that stochastic assembly processes were critical (>60% on average) in shaping community structure, but their relative importance decreased as stress increased. Dispersal limitation and 'drift' related to random birth and death had negative correlations with stresses, whereas the selection processes leading to dissimilar communities increased with stresses, primarily related to pH, cobalt and molybdenum. Assembly mechanisms also varied greatly among different phylogenetic groups. Our findings highlight the importance of microbial dispersal limitation and environmental heterogeneity in ecosystem restoration and management.


Subject(s)
Groundwater , Microbiota , Phylogeny , Stochastic Processes
4.
Front Microbiol ; 14: 1097500, 2023.
Article in English | MEDLINE | ID: mdl-36970672

ABSTRACT

The addition of small amounts of algal biomass to stimulate methane production in coal seams is a promising low carbon renewable coalbed methane enhancement technique. However, little is known about how the addition of algal biomass amendment affects methane production from coals of different thermal maturity. Here, we show that biogenic methane can be produced from five coals ranging in rank from lignite to low-volatile bituminous using a coal-derived microbial consortium in batch microcosms with and without algal amendment. The addition of 0.1 g/l algal biomass resulted in maximum methane production rates up to 37 days earlier and decreased the time required to reach maximum methane production by 17-19 days when compared to unamended, analogous microcosms. Cumulative methane production and methane production rate were generally highest in low rank, subbituminous coals, but no clear association between increasing vitrinite reflectance and decreasing methane production could be determined. Microbial community analysis revealed that archaeal populations were correlated with methane production rate (p = 0.01), vitrinite reflectance (p = 0.03), percent volatile matter (p = 0.03), and fixed carbon (p = 0.02), all of which are related to coal rank and composition. Sequences indicative of the acetoclastic methanogenic genus Methanosaeta dominated low rank coal microcosms. Amended treatments that had increased methane production relative to unamended analogs had high relative abundances of the hydrogenotrophic methanogenic genus Methanobacterium and the bacterial family Pseudomonadaceae. These results suggest that algal amendment may shift coal-derived microbial communities towards coal-degrading bacteria and CO2-reducing methanogens. These results have broad implications for understanding subsurface carbon cycling in coal beds and the adoption of low carbon renewable microbially enhanced coalbed methane techniques across a diverse range of coal geology.

5.
Microbiol Spectr ; 10(1): e0259121, 2022 02 23.
Article in English | MEDLINE | ID: mdl-35107332

ABSTRACT

Rhodanobacter species dominate in the Oak Ridge Reservation (ORR) subsurface environments contaminated with acids, nitrate, metal radionuclides, and other heavy metals. To uncover the genomic features underlying adaptations to these mixed-waste environments and to guide genetic tool development, we sequenced the whole genomes of eight Rhodanobacter strains isolated from the ORR site. The genome sizes ranged from 3.9 to 4.2 Mb harboring 3,695 to 4,035 protein-coding genes and GC contents approximately 67%. Seven strains were classified as R. denitrificans and one strain, FW510-R12, as R. thiooxydans based on full length 16S rRNA sequences. According to gene annotation, the top two Cluster of Orthologous Groups (COGs) with high pan-genome expansion rates (Pan/Core gene ratio) were "replication, recombination and repair" and "defense mechanisms." The denitrifying genes had high DNA homologies except the predicted protein structure variances in NosZ. In contrast, heavy metal resistance genes were diverse with between 7 to 34% of them were located in genomic islands, and these results suggested origins from horizontal gene transfer. Analysis of the methylation patterns in four strains revealed the unique 5mC methylation motifs. Most orthologs (78%) had ratios of nonsynonymous to synonymous substitutions (dN/dS) less than one when compared to the type strain 2APBS1, suggesting the prevalence of negative selection. Overall, the results provide evidence for the important roles of horizontal gene transfer and negative selection in genomic adaptation at the contaminated field site. The complex restriction-modification system genes and the unique methylation motifs in Rhodanobacter strains suggest the potential recalcitrance to genetic manipulation. IMPORTANCE Despite the dominance of Rhodanobacter species in the subsurface of the contaminated Oak Ridge Reservation (ORR) site, very little is known about the mechanisms underlying their adaptions to the various stressors present at ORR. Recently, multiple Rhodanobacter strains have been isolated from the ORR groundwater samples from several wells with varying geochemical properties. Using Illumina, PacBio, and Oxford Nanopore sequencing platforms, we obtained the whole genome sequences of eight Rhodanobacter strains. Comparison of the whole genomes demonstrated the genetic diversity, and analysis of the long nanopore reads revealed the heterogeneity of methylation patterns in strains isolated from the same well. Although all strains contained a complete set of denitrifying genes, the predicted tertiary structures of NosZ differed. The sequence comparison results demonstrate the important roles of horizontal gene transfer and negative selection in adaptation. In addition, these strains may be recalcitrant to genetic manipulation due to the complex restriction-modification systems and methylations.


Subject(s)
Gammaproteobacteria/genetics , Gammaproteobacteria/isolation & purification , Nitrates/analysis , Water Pollutants, Chemical/analysis , Base Composition , Gammaproteobacteria/classification , Gammaproteobacteria/metabolism , Gene Transfer, Horizontal , Genome Size , Genome, Bacterial , Genomic Islands , Genomics , Groundwater/microbiology , Metals, Heavy/analysis , Metals, Heavy/metabolism , Nitrates/metabolism , Phylogeny , Water Pollutants, Chemical/metabolism
6.
NPJ Biofilms Microbiomes ; 8(1): 7, 2022 02 17.
Article in English | MEDLINE | ID: mdl-35177633

ABSTRACT

Environmentally relevant metagenomes and BONCAT-FACS derived translationally active metagenomes from Powder River Basin coal seams were investigated to elucidate potential genes and functional groups involved in hydrocarbon degradation to methane in coal seams with high- and low-sulfate levels. An advanced subsurface environmental sampler allowed the establishment of coal-associated microbial communities under in situ conditions for metagenomic analyses from environmental and translationally active populations. Metagenomic sequencing demonstrated that biosurfactants, aerobic dioxygenases, and anaerobic phenol degradation pathways were present in active populations across the sampled coal seams. In particular, results suggested the importance of anaerobic degradation pathways under high-sulfate conditions with an emphasis on fumarate addition. Under low-sulfate conditions, a mixture of both aerobic and anaerobic pathways was observed but with a predominance of aerobic dioxygenases. The putative low-molecular-weight biosurfactant, lichysein, appeared to play a more important role compared to rhamnolipids. The methods used in this study-subsurface environmental samplers in combination with metagenomic sequencing of both total and translationally active metagenomes-offer a deeper and environmentally relevant perspective on community genetic potential from coal seams poised at different redox conditions broadening the understanding of degradation strategies for subsurface carbon.


Subject(s)
Coal , Microbiota , Metagenomics , Methane , Sulfates
7.
Environ Sci Technol ; 56(5): 3225-3233, 2022 03 01.
Article in English | MEDLINE | ID: mdl-35142487

ABSTRACT

Subsurface microbial (biogenic) methane production is an important part of the global carbon cycle that has resulted in natural gas accumulations in many coal beds worldwide. Laboratory studies suggest that complex carbon-containing nutrients (e.g., yeast or algae extract) can stimulate methane production, yet the effectiveness of these nutrients within coal beds is unknown. Here, we use downhole monitoring methods in combination with deuterated water (D2O) and a 200-liter injection of 0.1% yeast extract (YE) to stimulate and isotopically label newly generated methane. A total dissolved gas pressure sensor enabled real-time gas measurements (641 days preinjection and for 478 days postinjection). Downhole samples, collected with subsurface environmental samplers, indicate that methane increased 132% above preinjection levels based on isotopic labeling from D2O, 108% based on pressure readings, and 183% based on methane measurements 266 days postinjection. Demonstrating that YE enhances biogenic coalbed methane production in situ using multiple novel measurement methods has immediate implications for other field-scale biogenic methane investigations, including in situ methods to detect and track microbial activities related to the methanogenic turnover of recalcitrant carbon in the subsurface.


Subject(s)
Coal , Methane , Carbon , Natural Gas
8.
ISME J ; 16(4): 915-926, 2022 04.
Article in English | MEDLINE | ID: mdl-34689183

ABSTRACT

Microbial metabolisms and interactions that facilitate subsurface conversions of recalcitrant carbon to methane are poorly understood. We deployed an in situ enrichment device in a subsurface coal seam in the Powder River Basin (PRB), USA, and used BONCAT-FACS-Metagenomics to identify translationally active populations involved in methane generation from a variety of coal-derived aromatic hydrocarbons. From the active fraction, high-quality metagenome-assembled genomes (MAGs) were recovered for the acetoclastic methanogen, Methanothrix paradoxum, and a novel member of the Chlorobi with the potential to generate acetate via the Pta-Ack pathway. Members of the Bacteroides and Geobacter also encoded Pta-Ack and together, all four populations had the putative ability to degrade ethylbenzene, phenylphosphate, phenylethanol, toluene, xylene, and phenol. Metabolic reconstructions, gene analyses, and environmental parameters also indicated that redox fluctuations likely promote facultative energy metabolisms in the coal seam. The active "Chlorobi PRB" MAG encoded enzymes for fermentation, nitrate reduction, and multiple oxygenases with varying binding affinities for oxygen. "M. paradoxum PRB" encoded an extradiol dioxygenase for aerobic phenylacetate degradation, which was also present in previously published Methanothrix genomes. These observations outline underlying processes for bio-methane from subbituminous coal by translationally active populations and demonstrate activity-based metagenomics as a powerful strategy in next generation physiology to understand ecologically relevant microbial populations.


Subject(s)
Metagenomics , Methane , Coal , Metagenome , Methane/metabolism , Methanosarcinaceae/metabolism
9.
ISME J ; 16(3): 842-855, 2022 03.
Article in English | MEDLINE | ID: mdl-34650231

ABSTRACT

Modern linkages among magmatic, geochemical, and geobiological processes provide clues about the importance of thermophiles in the origin of biogeochemical cycles. The aim of this study was to identify the primary chemoautotrophs and host-virus interactions involved in microbial colonization and biogeochemical cycling at sublacustrine, vapor-dominated vents that represent the hottest measured ecosystems in Yellowstone National Park (~140 °C). Filamentous microbial communities exposed to extreme thermal and geochemical gradients were sampled using a remotely operated vehicle and subjected to random metagenome sequencing and microscopic analyses. Sulfurihydrogenibium (phylum Aquificae) was the predominant lineage (up to 84% relative abundance) detected at vents that discharged high levels of dissolved H2, H2S, and CO2. Metabolic analyses indicated carbon fixation by Sulfurihydrogenibium spp. was powered by the oxidation of reduced sulfur and H2, which provides organic carbon for heterotrophic community members. Highly variable Sulfurihydrogenibium genomes suggested the importance of intra-population diversity under extreme environmental and viral pressures. Numerous lytic viruses (primarily unclassified taxa) were associated with diverse archaea and bacteria in the vent community. Five circular dsDNA uncultivated virus genomes (UViGs) of ~40 kbp length were linked to the Sulfurihydrogenibium metagenome-assembled genome (MAG) by CRISPR spacer matches. Four UViGs contained consistent genome architecture and formed a monophyletic cluster with the recently proposed Pyrovirus genus within the Caudovirales. Sulfurihydrogenibium spp. also contained CRISPR arrays linked to plasmid DNA with genes for a novel type IV filament system and a highly expressed ß-barrel porin. A diverse suite of transcribed secretion systems was consistent with direct microscopic analyses, which revealed an extensive extracellular matrix likely critical to community structure and function. We hypothesize these attributes are fundamental to the establishment and survival of microbial communities in highly turbulent, extreme-gradient environments.


Subject(s)
Host Microbial Interactions , Microbiota , Bacteria , Biofilms , Phylogeny , Sulfur/metabolism
10.
mSystems ; : e0053721, 2021 Jun 29.
Article in English | MEDLINE | ID: mdl-34184913

ABSTRACT

Viruses are ubiquitous microbiome components, shaping ecosystems via strain-specific predation, horizontal gene transfer and redistribution of nutrients through host lysis. Viral impacts are important in groundwater ecosystems, where microbes drive many nutrient fluxes and metabolic processes; however, little is known about the diversity of viruses in these environments. We analyzed four groundwater plasmidomes (the entire plasmid content of an environment) and identified 200 viral sequences, which clustered into 41 genus-level viral clusters (approximately equivalent to viral genera) including 9 known and 32 putative new genera. We used publicly available bacterial whole-genome sequences (WGS) and WGS from 261 bacterial isolates from this groundwater environment to identify potential viral hosts. We linked 76 of the 200 viral sequences to a range of bacterial phyla, the majority associated with Proteobacteria, followed by Firmicutes, Bacteroidetes, and Actinobacteria. The publicly available WGS enabled mapping bacterial hosts to several viral sequences. The WGS of groundwater isolates increased the depth of host prediction by allowing host identification at the strain level. The latter included 4 viruses that were almost entirely (>99% query coverage, >99% identity) identified as integrated in the genomes of Pseudomonas, Acidovorax, and Castellaniella strains, resulting in high-confidence host assignments. Lastly, 21 of these viruses carried putative auxiliary metabolite genes for metal and antibiotic resistance, which might drive their infection cycles and/or provide selective advantage to infected hosts. Exploring the groundwater virome provides a necessary foundation for integration of viruses into ecosystem models where they are key players in microbial adaption to environmental stress. IMPORTANCE To our knowledge, this is the first study to identify the bacteriophage distribution in a groundwater ecosystem shedding light on their prevalence and distribution across metal-contaminated and background sites. Our study is uniquely based on selective sequencing of solely the extrachromosomal elements of a microbiome followed by analysis for viral signatures, thus establishing a more focused approach for phage identifications. Using this method, we detected several novel phage genera along with those previously established. Our approach of using the whole-genome sequences of hundreds of bacterial isolates from the same site enabled us to make host assignments with high confidence, several at strain levels. Certain phage genes suggest that they provide an environment-specific selective advantage to their bacterial hosts. Our study lays the foundation for future research on directed phage isolations using specific bacterial host strains to further characterize groundwater phages, their life cycles, and their effects on groundwater microbiome and biogeochemistry.

11.
Front Microbiol ; 12: 642422, 2021.
Article in English | MEDLINE | ID: mdl-33841364

ABSTRACT

Over the last century, leaps in technology for imaging, sampling, detection, high-throughput sequencing, and -omics analyses have revolutionized microbial ecology to enable rapid acquisition of extensive datasets for microbial communities across the ever-increasing temporal and spatial scales. The present challenge is capitalizing on our enhanced abilities of observation and integrating diverse data types from different scales, resolutions, and disciplines to reach a causal and mechanistic understanding of how microbial communities transform and respond to perturbations in the environment. This type of causal and mechanistic understanding will make predictions of microbial community behavior more robust and actionable in addressing microbially mediated global problems. To discern drivers of microbial community assembly and function, we recognize the need for a conceptual, quantitative framework that connects measurements of genomic potential, the environment, and ecological and physical forces to rates of microbial growth at specific locations. We describe the Framework for Integrated, Conceptual, and Systematic Microbial Ecology (FICSME), an experimental design framework for conducting process-focused microbial ecology studies that incorporates biological, chemical, and physical drivers of a microbial system into a conceptual model. Through iterative cycles that advance our understanding of the coupling across scales and processes, we can reliably predict how perturbations to microbial systems impact ecosystem-scale processes or vice versa. We describe an approach and potential applications for using the FICSME to elucidate the mechanisms of globally important ecological and physical processes, toward attaining the goal of predicting the structure and function of microbial communities in chemically complex natural environments.

12.
Microbiol Resour Announc ; 10(5)2021 Feb 04.
Article in English | MEDLINE | ID: mdl-33541873

ABSTRACT

A thermophilic methanogen was enriched in coculture from Washburn Hot Springs (Yellowstone National Park, USA), grown on carbon dioxide and hydrogen, and subsequently sequenced. The reconstructed 1.65-Mb genome sequence for Methanothermobacter thermautotrophicus WHS contributes to our understanding of hydrogenotrophic, CO2-reducing methanogenesis in geothermal ecosystems.

13.
PLoS One ; 15(9): e0232437, 2020.
Article in English | MEDLINE | ID: mdl-32986713

ABSTRACT

Subsurface microbial communities mediate the transformation and fate of redox sensitive materials including organic matter, metals and radionuclides. Few studies have explored how changing geochemical conditions influence the composition of groundwater microbial communities over time. We temporally monitored alterations in abiotic forces on microbial community structure using 1L in-field bioreactors receiving background and contaminated groundwater at the Oak Ridge Reservation, TN. Planktonic and biofilm microbial communities were initialized with background water for 4 days to establish communities in triplicate control reactors and triplicate test reactors and then fed filtered water for 14 days. On day 18, three reactors were switched to receive filtered groundwater from a contaminated well, enriched in total dissolved solids relative to the background site, particularly chloride, nitrate, uranium, and sulfate. Biological and geochemical data were collected throughout the experiment, including planktonic and biofilm DNA for 16S rRNA amplicon sequencing, cell counts, total protein, anions, cations, trace metals, organic acids, bicarbonate, pH, Eh, DO, and conductivity. We observed significant shifts in both planktonic and biofilm microbial communities receiving contaminated water. This included a loss of rare taxa, especially amongst members of the Bacteroidetes, Acidobacteria, Chloroflexi, and Betaproteobacteria, but enrichment in the Fe- and nitrate- reducing Ferribacterium and parasitic Bdellovibrio. These shifted communities were more similar to the contaminated well community, suggesting that geochemical forces substantially influence microbial community diversity and structure. These influences can only be captured through such comprehensive temporal studies, which also enable more robust and accurate predictive models to be developed.


Subject(s)
Bacteria , Geologic Sediments/microbiology , Groundwater/chemistry , Metals, Heavy/analysis , Microbiota , Soil Microbiology , Bacteria/classification , Bacteria/growth & development , Biofilms , Bioreactors/microbiology , Phylogeny , RNA, Ribosomal, 16S/genetics
14.
iScience ; 23(9): 101459, 2020 Sep 25.
Article in English | MEDLINE | ID: mdl-32861995

ABSTRACT

We explore archaeal distributions in sedimentary subseafloor habitats of Guaymas Basin and the adjacent Sonora Margin, located in the Gulf of California, México. Sampling locations include (1) control sediments without hydrothermal or seep influence, (2) Sonora Margin sediments underlying oxygen minimum zone water, (3) compacted, highly reduced sediments from a pressure ridge with numerous seeps at the base of the Sonora Margin, and (4) sediments impacted by hydrothermal circulation at the off-axis Ringvent site. Generally, archaeal communities largely comprise Bathyarchaeal lineages, members of the Hadesarchaea, MBG-D, TMEG, and ANME-1 groups. Variations in archaeal community composition reflect locally specific environmental challenges. Background sediments are divided into surface and subsurface niches. Overall, the environmental setting and history of a particular site, not isolated biogeochemical properties out of context, control the subseafloor archaeal communities in Guaymas Basin and Sonora Margin sediments.

15.
Chemosphere ; 255: 126951, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32417512

ABSTRACT

The processing of sediment to accurately characterize the spatially-resolved depth profiles of geophysical and geochemical properties along with signatures of microbial density and activity remains a challenge especially in complex contaminated areas. This study processed cores from two sediment boreholes from background and contaminated core sediments and surrounding groundwater. Fresh core sediments were compared by depth to capture the changes in sediment structure, sediment minerals, biomass, and pore water geochemistry in terms of major and trace elements including pollutants, cations, anions, and organic acids. Soil porewater samples were matched to groundwater level, flow rate, and preferential flows and compared to homogenized groundwater-only samples from neighboring monitoring wells. Groundwater analysis of nearby wells only revealed high sulfate and nitrate concentrations while the same analysis using sediment pore water samples with depth was able to suggest areas high in sulfate- and nitrate-reducing bacteria based on their decreased concentration and production of reduced by-products that could not be seen in the groundwater samples. Positive correlations among porewater content, total organic carbon, trace metals and clay minerals revealed a more complicated relationship among contaminant, sediment texture, groundwater table, and biomass. The fluctuating capillary interface had high concentrations of Fe and Mn-oxides combined with trace elements including U, Th, Sr, Ba, Cu, and Co. This suggests the mobility of potentially hazardous elements, sediment structure, and biogeochemical factors are all linked together to impact microbial communities, emphasizing that solid interfaces play an important role in determining the abundance of bacteria in the sediments.


Subject(s)
Geologic Sediments/chemistry , Uranium/chemistry , Water Pollutants, Radioactive/chemistry , Bacteria , Groundwater/chemistry , Nitrates/analysis , Organic Chemicals , Sulfates/analysis , Uranium/analysis , Water Pollutants, Radioactive/analysis
16.
Microbiome ; 8(1): 51, 2020 04 06.
Article in English | MEDLINE | ID: mdl-32252814

ABSTRACT

BACKGROUND: The newly defined superphylum Patescibacteria such as Parcubacteria (OD1) and Microgenomates (OP11) has been found to be prevalent in groundwater, sediment, lake, and other aquifer environments. Recently increasing attention has been paid to this diverse superphylum including > 20 candidate phyla (a large part of the candidate phylum radiation, CPR) because it refreshed our view of the tree of life. However, adaptive traits contributing to its prevalence are still not well known. RESULTS: Here, we investigated the genomic features and metabolic pathways of Patescibacteria in groundwater through genome-resolved metagenomics analysis of > 600 Gbp sequence data. We observed that, while the members of Patescibacteria have reduced genomes (~ 1 Mbp) exclusively, functions essential to growth and reproduction such as genetic information processing were retained. Surprisingly, they have sharply reduced redundant and nonessential functions, including specific metabolic activities and stress response systems. The Patescibacteria have ultra-small cells and simplified membrane structures, including flagellar assembly, transporters, and two-component systems. Despite the lack of CRISPR viral defense, the bacteria may evade predation through deletion of common membrane phage receptors and other alternative strategies, which may explain the low representation of prophage proteins in their genomes and lack of CRISPR. By establishing the linkages between bacterial features and the groundwater environmental conditions, our results provide important insights into the functions and evolution of this CPR group. CONCLUSIONS: We found that Patescibacteria has streamlined many functions while acquiring advantages such as avoiding phage invasion, to adapt to the groundwater environment. The unique features of small genome size, ultra-small cell size, and lacking CRISPR of this large lineage are bringing new understandings on life of Bacteria. Our results provide important insights into the mechanisms for adaptation of the superphylum in the groundwater environments, and demonstrate a case where less is more, and small is mighty.


Subject(s)
Adaptation, Physiological , Bacteria/genetics , Genome Size , Genome, Bacterial , Groundwater/microbiology , Fermentation , Metabolic Networks and Pathways , Metagenomics
17.
Biofilm ; 2: 100020, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33447806

ABSTRACT

The Center for Biofilm Engineering was the first center of excellence focused on biofilms and was originally funded through the Engineering Research Center Program from the U.S. National Science Foundation. After almost 30 years, biofilm continues to be a stand-alone scientific topic of inquiry that has broad implications for fundamental and applied science and engineering of bio-systems. However, much remains to be done, not only for research discovery but also education and outreach, to increase and grow the biofilm paradigm as well as our understanding of the microbial world.

18.
Water Res ; 164: 114917, 2019 Nov 01.
Article in English | MEDLINE | ID: mdl-31387058

ABSTRACT

Understanding microbial community structure and function within the subsurface is critical to assessing overall quality and maintenance of groundwater; however, the factors that determine microbial community assembly, structure, and function in groundwater systems and their impact on water quality remains poorly understood. In this study, three shallow wells (FW301, FW303, FW305) in a non-contaminated shallow aquifer in the ENIGMA-Oak Ridge Field Research Center (Oak Ridge, TN) were sampled approximately 3 times a week over a period of three months to measure changes in groundwater geochemistry and microbial diversity. It was expected that the sampled microbial diversity from two historic field wells (FW301, FW303) would be relatively stable, while diversity from a newer well (FW305) would be less stable over time. The wells displayed some degree of hydrochemical variability over time unique to each well, with FW303 being overall the most stable well and FW301 being the most dynamic based upon dissolved oxygen, conductivity, and nitrate. Community analysis via ss-rRNA paired-end sequencing and distribution-based clustering revealed higher OTU richness, diversity, and variability in groundwater communities of FW301 than the other two wells for diversity binned over all time points. Microbial community composition of a given well was on average > 50% dissimilar to any other well at a given time (days), yet, functional gene diversity as measured with GeoChip remained relatively constant. Similarities in community structure across wells were observed with respect to the presence of 20 shared bacterial groups in all samples in all wells, although at varying levels over the tested time period. Similarity percentage (SIMPER) analysis revealed that variability in FW301 was largely attributed to low abundance, highly-transient populations, while variability in the most hydrochemically stable well (FW303) was due to fluctuations in more highly abundant and frequently present taxa. Additionally, the youngest well FW305 showed a dramatic shift in community composition towards the end of the sampling period that was not observed in the other wells, suggesting possible succession events over time. Time-series analysis using vector auto-regressive models and Granger causality showed unique relationships between richness and geochemistry over time in each well. These results indicate temporally dynamic microbial communities over short time scales, with day-to-day population shifts in local community structure influenced by available source community diversity and local groundwater hydrochemistry.


Subject(s)
Groundwater , Bacteria , Nitrates , Water Quality , Water Wells
19.
Biofouling ; 35(6): 669-683, 2019 07.
Article in English | MEDLINE | ID: mdl-31402749

ABSTRACT

Desulfovibrio alaskensis G20 biofilms were cultivated on 316 steel, 1018 steel, or borosilicate glass under steady-state conditions in electron-acceptor limiting (EAL) and electron-donor limiting (EDL) conditions with lactate and sulfate in a defined medium. Increased corrosion was observed on 1018 steel under EDL conditions compared to 316 steel, and biofilms on 1018 carbon steel under the EDL condition had at least twofold higher corrosion rates compared to the EAL condition. Protecting the 1018 metal coupon from biofilm colonization significantly reduced corrosion, suggesting that the corrosion mechanism was enhanced through attachment between the material and the biofilm. Metabolomic mass spectrometry analyses demonstrated an increase in a flavin-like molecule under the 1018 EDL condition and sulfonates under the 1018 EAL condition. These data indicate the importance of S-cycling under the EAL condition, and that the EDL is associated with increased biocorrosion via indirect extracellular electron transfer mediated by endogenously produced flavin-like molecules.


Subject(s)
Biofilms , Desulfovibrio/physiology , Steel/chemistry , Biofouling , Biological Transport , Corrosion , Electrons , Oxidation-Reduction , Sulfates/metabolism
20.
Environ Sci Technol ; 53(15): 8649-8663, 2019 Aug 06.
Article in English | MEDLINE | ID: mdl-31260289

ABSTRACT

Methylmercury (MeHg) is a bioaccumulative toxic contaminant in many ecosystems, but factors governing its production are poorly understood. Recent work has shown that the anaerobic microbial conversion of mercury (Hg) to MeHg requires the Hg-methylation genes hgcAB and that these genes can be used as biomarkers in PCR-based estimators of Hg-methylator abundance. In an effort to determine reliable methods for assessing hgcA abundance and diversity and linking them to MeHg concentrations, multiple approaches were compared including metagenomic shotgun sequencing, 16S rRNA gene pyrosequencing and cloning/sequencing hgcAB gene products. Hg-methylator abundance was also determined by quantitative hgcA qPCR amplification and metaproteomics for comparison to the above measurements. Samples from eight sites were examined covering a range of total Hg (HgT; 0.03-14 mg kg-1 dry wt. soil) and MeHg (0.05-27 µg kg-1 dry wt. soil) concentrations. In the metagenome and amplicon sequencing of hgcAB diversity, the Deltaproteobacteria were the dominant Hg-methylators while Firmicutes and methanogenic Archaea were typically ∼50% less abundant. This was consistent with metaproteomics estimates where the Deltaproteobacteria were steadily higher. The 16S rRNA gene pyrosequencing did not have sufficient resolution to identify hgcAB+ species. Metagenomic and hgcAB results were similar for Hg-methylator diversity and clade-specific qPCR-based approaches for hgcA are only appropriate when comparing the abundance of a particular clade across various samples. Weak correlations between Hg-methylating bacteria and soil Hg concentrations were observed for similar environmental samples, but overall total Hg and MeHg concentrations poorly correlated with Hg-cycling genes.


Subject(s)
Mercury , Methylmercury Compounds , Ecosystem , Environmental Monitoring , RNA, Ribosomal, 16S , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...