Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Comput Struct Biotechnol J ; 20: 218-229, 2022.
Article in English | MEDLINE | ID: mdl-35024094

ABSTRACT

Cell-free protein synthesis (CFPS) reactions have grown in popularity with particular interest in applications such as gene construct prototyping, biosensor technologies and the production of proteins with novel chemistry. Work has frequently focussed on optimising CFPS protocols for improving protein yield, reducing cost, or developing streamlined production protocols. Here we describe a statistical Design of Experiments analysis of 20 components of a popular CFPS reaction buffer. We simultaneously identify factors and factor interactions that impact on protein yield, rate of reaction, lag time and reaction longevity. This systematic experimental approach enables the creation of a statistical model capturing multiple behaviours of CFPS reactions in response to components and their interactions. We show that a novel reaction buffer outperforms the reference reaction by 400% and importantly reduces failures in CFPS across batches of cell lysates, strains of E. coli, and in the synthesis of different proteins. Detailed and quantitative understanding of how reaction components affect kinetic responses and robustness is imperative for future deployment of cell-free technologies.

2.
Chem Commun (Camb) ; 56(52): 7108-7111, 2020 Jul 04.
Article in English | MEDLINE | ID: mdl-32458833

ABSTRACT

We report a method for embedding cell-free protein synthesis reactions in macro-scale hydrogel materials without a free liquid phase. This paper focuses on methods of preparation for a variety of hydrogels and an investigation of the impact that the hydrogel material has on cell-free protein synthesis.


Subject(s)
Biocompatible Materials/chemistry , Hydrogels/chemistry , Hydrogels/metabolism , Protein Biosynthesis/genetics , Proteins/genetics , Tissue Scaffolds/chemistry , Cell Extracts , Cell Line , DNA/metabolism , Polyethylene Glycols/chemistry , Polyethylene Glycols/metabolism , Polymers/chemistry , Polymers/metabolism , Sepharose/chemistry , Sepharose/metabolism
3.
Evol Comput ; 23(3): 481-507, 2015.
Article in English | MEDLINE | ID: mdl-25950392

ABSTRACT

Mesh network topologies are becoming increasingly popular in battery-powered wireless sensor networks, primarily because of the extension of network range. However, multihop mesh networks suffer from higher energy costs, and the routing strategy employed directly affects the lifetime of nodes with limited energy resources. Hence when planning routes there are trade-offs to be considered between individual and system-wide battery lifetimes. We present a multiobjective routing optimisation approach using hybrid evolutionary algorithms to approximate the optimal trade-off between the minimum lifetime and the average lifetime of nodes in the network. In order to accomplish this combinatorial optimisation rapidly, our approach prunes the search space using k-shortest path pruning and a graph reduction method that finds candidate routes promoting long minimum lifetimes. When arbitrarily many routes from a node to the base station are permitted, optimal routes may be found as the solution to a well-known linear program. We present an evolutionary algorithm that finds good routes when each node is allowed only a small number of paths to the base station. On a real network deployed in the Victoria & Albert Museum, London, these solutions, using only three paths per node, are able to achieve minimum lifetimes of over 99% of the optimum linear program solution's time to first sensor battery failure.


Subject(s)
Algorithms , Biological Evolution , Models, Theoretical
4.
Evol Comput ; 22(3): 479-501, 2014.
Article in English | MEDLINE | ID: mdl-24605846

ABSTRACT

Multi-objective optimisation yields an estimated Pareto front of mutually non- dominating solutions, but with more than three objectives, understanding the relationships between solutions is challenging. Natural solutions to use as landmarks are those lying near to the edges of the mutually non-dominating set. We propose four definitions of edge points for many-objective mutually non-dominating sets and examine the relations between them. The first defines edge points to be those that extend the range of the attainment surface. This is shown to be equivalent to finding points which are not dominated on projection onto subsets of the objectives. If the objectives are to be minimised, a further definition considers points which are not dominated under maximisation when projected onto objective subsets. A final definition looks for edges via alternative projections of the set. We examine the relations between these definitions and their efficacy in many dimensions for synthetic concave- and convex-shaped sets, and on solutions to a prototypical many-objective optimisation problem, showing how they can reveal information about the structure of the estimated Pareto front. We show that the "controlling dominance area of solutions" modification of the dominance relation can be effectively used to locate edges and interior points of high-dimensional mutually non-dominating sets.


Subject(s)
Algorithms , Computing Methodologies , Mathematical Computing , Models, Theoretical , Computer Simulation
5.
IEEE Trans Inf Technol Biomed ; 11(3): 312-9, 2007 May.
Article in English | MEDLINE | ID: mdl-17521081

ABSTRACT

Bayesian averaging (BA) over ensembles of decision models allows evaluation of the uncertainty of decisions that is of crucial importance for safety-critical applications such as medical diagnostics. The interpretability of the ensemble can also give useful information for experts responsible for making reliable decisions. For this reason, decision trees (DTs) are attractive decision models for experts. However, BA over such models makes an ensemble of DTs uninterpretable. In this paper, we present a new approach to probabilistic interpretation of Bayesian DT ensembles. This approach is based on the quantitative evaluation of uncertainty of the DTs, and allows experts to find a DT that provides a high predictive accuracy and confident outcomes. To make the BA over DTs feasible in our experiments, we use a Markov Chain Monte Carlo technique with a reversible jump extension. The results obtained from clinical data show that in terms of predictive accuracy, the proposed method outperforms the maximum a posteriori (MAP) method that has been suggested for interpretation of DT ensembles.


Subject(s)
Algorithms , Artificial Intelligence , Bayes Theorem , Decision Support Systems, Clinical , Decision Support Techniques , Diagnosis, Computer-Assisted/methods , Pattern Recognition, Automated/methods , Monte Carlo Method
SELECTION OF CITATIONS
SEARCH DETAIL