Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Article in English | MEDLINE | ID: mdl-34067438

ABSTRACT

Human biomonitoring (HBM) monitors levels of environmental pollutants in human samples, which often is a topic of concern for residents near industrially contaminated sites (ICSs). Around an ICS area in Menen (Belgium), including a (former) municipal waste incinerator and a metal recovery plant, increasing environmental concentrations of dioxins and polychlorinated biphenyls (PCBs) were observed, causing growing concern among residents and authorities. The local community succeeded in convincing the responsible authorities to investigate the problem and offer research funding. Persistent organic pollutants (POPs) were measured in two consecutive HBM studies (2002-2006 and 2010-2011), in the context of the Flemish Environment and Health Study (FLEHS), as well as in soil and locally produced food. Meanwhile, local authorities discouraged consumption of locally produced food in a delineated area of higher exposure risk. Ultimately, HBM and environmental data enabled tailored dietary recommendations. This article demonstrates the usefulness of HBM in documenting the body burdens of residents near the ICS, identifying exposure routes, evaluating remediating actions and providing information for tailored policy strategies aiding to further exposure reduction. It also highlights the role of the local stakeholders as an example of community-based participatory research and how such an approach can create societal support for research and policy.


Subject(s)
Dioxins , Environmental Pollutants , Polychlorinated Biphenyls , Belgium , Biological Monitoring , Environmental Monitoring , Environmental Pollutants/analysis , Humans , Policy , Polychlorinated Biphenyls/analysis
2.
Epidemiol Prev ; 42(5-6S1): 21-36, 2018.
Article in English | MEDLINE | ID: mdl-30322233

ABSTRACT

BACKGROUND: this paper is based upon work from COST Action ICSHNet. Health risks related to living close to industrially contaminated sites (ICSs) are a public concern. Toxicology-based risk assessment of single contaminants is the main approach to assess health risks, but epidemiological studies which investigate the relationships between exposure and health directly in the affected population have contributed important evidence. Limitations in exposure assessment have substantially contributed to uncertainty about associations found in epidemiological studies. OBJECTIVES: to examine exposure assessment methods that have been used in epidemiological studies on ICSs and to provide recommendations for improved exposure assessment in epidemiological studies by comparing exposure assessment methods in epidemiological studies and risk assessments. METHODS: after defining the multi-media framework of exposure related to ICSs, we discussed selected multi-media models applied in Europe. We provided an overview of exposure assessment in 54 epidemiological studies from a systematic review of hazardous waste sites; a systematic review of 41 epidemiological studies on incinerators and 52 additional studies on ICSs and health identified for this review. RESULTS: we identified 10 multi-media models used in Europe primarily for risk assessment. Recent models incorporated estimation of internal biomarker levels. Predictions of the models differ particularly for the routes 'indoor air inhalation' and 'vegetable consumption'. Virtually all of the 54 hazardous waste studies used proximity indicators of exposure, based on municipality or zip code of residence (28 studies) or distance to a contaminated site (25 studies). One study used human biomonitoring. In virtually all epidemiological studies, actual land use was ignored. In the 52 additional studies on contaminated sites, proximity indicators were applied in 39 studies, air pollution dispersion modelling in 6 studies, and human biomonitoring in 9 studies. Exposure assessment in epidemiological studies on incinerators included indicators (presence of source in municipality and distance to the incinerator) and air dispersion modelling. Environmental multi-media modelling methods were not applied in any of the three groups of studies. CONCLUSIONS: recommendations for refined exposure assessment in epidemiological studies included the use of more sophisticated exposure metrics instead of simple proximity indicators where feasible, as distance from a source results in misclassification of exposure as it ignores key determinants of environmental fate and transport, source characteristics, land use, and human consumption behaviour. More validation studies using personal exposure or human biomonitoring are needed to assess misclassification of exposure. Exposure assessment should take more advantage of the detailed multi-media exposure assessment procedures developed for risk assessment. The use of indicators can be substantially improved by linking definition of zones of exposure to existing knowledge of extent of dispersion. Studies should incorporate more often land use and individual behaviour.


Subject(s)
Environmental Exposure , Environmental Pollution , Epidemiologic Studies , Industry , Environmental Monitoring , Guidelines as Topic , Humans , Models, Theoretical , Risk Assessment
3.
Article in English | MEDLINE | ID: mdl-29448899

ABSTRACT

A dietary exposure assessment of food emulsifiers E481 (sodium stearoyl-2-lactylate) and E482 (calcium stearoyl-2-lactylate) in the Belgian population was performed. Nationally representative food consumption data from the Belgian National Food Consumption Surveys 2004 (BNFCS2004) and 2014 (BNFCS2014) were used for calculations. A conservative approach (combining individual food consumption data with the maximum permitted level (MPL) of foods (tier 2), was compared with more refined estimates (combining individual food consumption data with actual concentrations measured in food products available on the Belgian market (tier 3)). Estimated daily intakes were compared to the acceptable daily intake (ADI) of the stearoyl-2-lactylates. The results of tier 2 demonstrated that 92% of the children (3-9 years), 53% of the adolescents (10-17 years), 15% of the adults (18-64 years) and 26% of the elderly (64-98 years) had a potential intake higher than the ADI. When replacing the MPL with maximum analysed concentration levels in foods, daily intake estimates decreased dramatically. The estimated daily intake of the food emulsifiers was below the ADI for all age groups, except for a small percentage of children (1.9%) for which the intake exceeded the ADI. The main contributors to the exposure of E481 and E482 were bread, rolls and fine bakery wares.


Subject(s)
Dietary Exposure , Food Contamination/analysis , Stearates/analysis , Adolescent , Adult , Aged , Aged, 80 and over , Belgium , Child , Child, Preschool , Humans , Middle Aged , Young Adult
4.
Sci Total Environ ; 568: 794-802, 2016 Oct 15.
Article in English | MEDLINE | ID: mdl-27113276

ABSTRACT

In this study, we report on model simulations performed using the newly developed exposure tool, MERLIN-Expo, in order to assess inorganic arsenic (iAs) exposure to adults resulting from past emissions by non-ferrous smelters in Belgium (Northern Campine area). Exposure scenarios were constructed to estimate external iAs exposure as well as the toxicologically relevant As (tAs, i.e., iAs, MMA and DMA) body burden in adults living in the vicinity of the former industrial sites as compared to adults living in adjacent areas and a reference area. Two scenarios are discussed: a first scenario studying exposure to iAs at the aggregated population level and a second scenario studying exposure at the individual level for a random sub-sample of subjects in each of the three different study areas. These two scenarios only differ in the type of human related input data (i.e., time-activity data, ingestion rates and consumption patterns) that were used, namely averages (incl. probability density functions, PDFs) in the simulation at population level and subject-specific values in the simulation at individual level. The model predictions are shown to be lower than the corresponding biomonitoring data from the monitoring campaign. Urinary tAs levels in adults, irrespective of the area they lived in, were under-predicted by MERLIN-Expo by 40% on average. The model predictions for individual adults, by contrast, under-predict the biomonitoring data by 7% on average, but with more important under-predictions for subjects at the upper end of exposure. Still, average predicted urinary tAs levels from the simulations at population level and at individual level overlap, and, at least for the current case, lead to similar conclusions. These results constitute a first and partial verification of the model performance of MERLIN-Expo when dealing with iAs in a complex site-specific exposure scenario, and demonstrate the robustness of the modelling tool for these situations.


Subject(s)
Air Pollutants/pharmacokinetics , Arsenicals/pharmacokinetics , Environmental Exposure/analysis , Inorganic Chemicals/pharmacokinetics , Models, Biological , Belgium , Body Burden , Environmental Monitoring/methods , Humans , Metallurgy , Multimedia , Predictive Value of Tests
5.
Sci Total Environ ; 568: 785-793, 2016 Oct 15.
Article in English | MEDLINE | ID: mdl-27102273

ABSTRACT

This paper reports on a case study - conducted within the European FP7 project "4FUN" - focusing on exposure of pre-school children to lead resulting from past emissions by non-ferrous smelters in Belgium (Northern Campine area). Exposure scenarios were constructed and simulated with the MERLIN-Expo tool to estimate external Pb exposure as well as the Pb body burden in children living in the vicinity of the former industrial sites as compared to children living in adjacent areas and a reference area. Simulations were run for several scenarios ranging from very simple to rather complex in order to study the effect of different simulation approaches (e.g., deterministic vs. probabilistic, individual vs. aggregated population exposure) and different exposure scenarios (e.g., with vs. without considering local food consumption or time activity patterns) on the model outcomes (predicted concentrations of Pb in environmental and human matrices). This paper discusses the two most complex scenarios, namely exposure at the aggregated population level and at the individual level for a random sub-sample of subjects, respectively. In the final and most realistic exposure scenario, simulating individual lead exposure, model predictions were shown to be higher than the biomonitoring data. Blood Pb levels in children, irrespective of the area they lived in, were overpredicted by MERLIN-Expo with a factor of about 2 on average. The model predictions for individual children overlap with the prediction interval calculated by MERLIN-Expo based on population averages, demonstrating the use of probabilistic approaches in risk assessment. While these results constitute a first verification of the model performance of MERLIN-Expo dealing with inorganic pollutants in a complex real-world exposure scenario and a demonstration of the robustness of the modelling tool, further validation and benchmarking efforts are required for a larger number of inorganic pollutants and different exposure settings.


Subject(s)
Environmental Monitoring/methods , Environmental Pollutants/analysis , Environmental Pollutants/blood , Lead/analysis , Lead/blood , Metallurgy , Models, Biological , Belgium , Child, Preschool , Environmental Exposure/analysis , Environmental Exposure/statistics & numerical data , Humans , Multimedia , Random Allocation , Residence Characteristics
6.
Environ Res ; 134: 345-52, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25203818

ABSTRACT

As numerous studies have indicated that food ingestion is the most important exposure pathway to several phthalates, this study aimed to determine possible contamination pathways of phthalates in food products sold on the Belgian market. To do this, concentrations of eight phthalates (dimethyl phthalate (DMP), diethyl phthalate (DEP), diisobutyl phthalate (DiBP), di-n-butyl phthalate (DnBP), benzylbutyl phthalate (BBP), dicyclohexyl phthalate (DCHP), di(2-ethylhexyl) phthalate (DEHP) and di-n-octyl phthalate (DnOP)) were determined in 591 foods and 30 packaging materials. In general, the four most prominent phthalates in Belgian food products were DEHP, DiBP, DnBP and BBP. Special attention was given to the origin of these phthalates in bread, since high phthalate concentrations (especially DEHP) were determined in this frequently consumed food product. Phthalates seemed to occur in Belgian bread samples due to the use of contaminated ingredients (i.e. use of contaminated flour) as well as due to migration from phthalate containing contact materials used during production (e.g. coated baking trays). Also the results of the conducted concentration profiles of apple, bread, salami and two cheese types revealed the important role of processing - and not packaging - on phthalate contents in foods.


Subject(s)
Food Contamination/analysis , Phthalic Acids/analysis , Belgium
7.
Environ Res ; 134: 110-7, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25127521

ABSTRACT

As part of the second Flemish Environment and Health Study (FLEHS II), bisphenol-A (BPA) and different phthalate metabolites were analyzed, for the first time, in the urine of 210 adolescents in Flanders, Belgium. All chemicals had a detection frequency above 90%. For all compounds, except the sum of DEHP, highest levels were detected during spring. Average values for the Flemish adolescents were in an agreement with concentrations found in different international studies, all confirming the ubiquity of BPA and phthalate exposure. There was a significant correlation between BPA and the different phthalate metabolites (r between 0.26 and 0.39; p<0.01). Shared sources of exposure to BPA and phthalates, such as food packaging, were suggested to be responsible for this positive correlation. Different determinants of exposure were evaluated in relation to the urinary concentrations of these chemicals. For BPA, a significant association was observed with household income class, smoking and exposure to environmental tobacco smoke. For phthalates, the following significant associations were observed: age (MBzP), educational level of the adolescent (MBzP), equivalent household income (MnBP), use of personal care products (MnBP and MBzP), wall paper in house (MnBP and MBzP) and use of local vegetables (MnBP and MBzP).


Subject(s)
Benzhydryl Compounds/urine , Phenols/urine , Phthalic Acids/urine , Water Pollutants, Chemical/urine , Adolescent , Belgium , Humans , Limit of Detection
8.
Environ Int ; 48: 102-8, 2012 Nov 01.
Article in English | MEDLINE | ID: mdl-22885666

ABSTRACT

Numerous studies have indicated that for phthalates, the intake of contaminated foods is the most important exposure pathway for the general population. Up to now, data on dietary phthalate intake are scarce and - to the authors' knowledge - not available for the Belgian population. Therefore, the purpose of this study was: (1) to assess the long-term intake of the Belgian population for eight phthalates considering different exposure scenarios (benzylbutyl phthalate (BBP); di-n-butyl phthalate (DnBP); dicyclohexyl phthalate (DCHP); di(2-ethylhexyl) phthalate (DEHP); diethyl phthalate (DEP); diisobutyl phthalate (DiBP); dimethyl phthalate (DMP), di-n-octyl phthalate (DnOP)); (2) to evaluate the intake of BBP, DnBP, DEP and DEHP against tolerable daily intake (TDI) values; and (3) to assess the contribution of the different food groups to the phthalate intake. The intake assessment was performed using two Belgian food consumption databases, one with consumption data of preschool children (2.5 to 6.5 years old) and another of adults (≥15 years old), combined with a database of phthalate concentrations measured in over 550 food products sold on the Belgian market. Phthalate intake was calculated using the 'Monte Carlo Risk Assessment' programme (MCRA 7.0). The intake of DEHP was the highest, followed by DiBP. The intake of BBP, DnBP and DEP was far below the TDI for both children and adults. However, for DEHP, the 99th percentile of the intake distribution of preschoolers in the worst case exposure scenario was equal to 80% of the TDI, respectively. This is not negligible, since other exposure routes of DEHP exist for children as well (e.g. mouthing of toys). Bread was the most important contributor to the DEHP intake and this may deserve further exploration, since the origin of this phthalate in bread remains unclear.


Subject(s)
Diet/statistics & numerical data , Environmental Exposure/statistics & numerical data , Environmental Pollutants/analysis , Food Contamination/statistics & numerical data , Phthalic Acids/analysis , Adult , Child , Child, Preschool , Diethylhexyl Phthalate/analysis , Diethylhexyl Phthalate/metabolism , Environmental Pollutants/metabolism , Environmental Pollution/statistics & numerical data , Female , Food Contamination/analysis , Humans , Phthalic Acids/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...