Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 25(8)2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38673939

ABSTRACT

Polyglutamine (polyQ)-encoding CAG repeat expansions represent a common disease-causing mutation responsible for several dominant spinocerebellar ataxias (SCAs). PolyQ-expanded SCA proteins are toxic for cerebellar neurons, with Purkinje cells (PCs) being the most vulnerable. RNA interference (RNAi) reagents targeting transcripts with expanded CAG reduce the level of various mutant SCA proteins in an allele-selective manner in vitro and represent promising universal tools for treating multiple CAG/polyQ SCAs. However, it remains unclear whether the therapeutic targeting of CAG expansion can be achieved in vivo and if it can ameliorate cerebellar functions. Here, using a mouse model of SCA7 expressing a mutant Atxn7 allele with 140 CAGs, we examined the efficacy of short hairpin RNAs (shRNAs) targeting CAG repeats expressed from PHP.eB adeno-associated virus vectors (AAVs), which were introduced into the brain via intravascular injection. We demonstrated that shRNAs carrying various mismatches with the CAG target sequence reduced the level of polyQ-expanded ATXN7 in the cerebellum, albeit with varying degrees of allele selectivity and safety profile. An shRNA named A4 potently reduced the level of polyQ-expanded ATXN7, with no effect on normal ATXN7 levels and no adverse side effects. Furthermore, A4 shRNA treatment improved a range of motor and behavioral parameters 23 weeks after AAV injection and attenuated the disease burden of PCs by preventing the downregulation of several PC-type-specific genes. Our results show the feasibility of the selective targeting of CAG expansion in the cerebellum using a blood-brain barrier-permeable vector to attenuate the disease phenotype in an SCA mouse model. Our study represents a significant advancement in developing CAG-targeting strategies as a potential therapy for SCA7 and possibly other CAG/polyQ SCAs.


Subject(s)
Ataxin-7 , Dependovirus , Disease Models, Animal , Peptides , Phenotype , RNA, Small Interfering , Spinocerebellar Ataxias , Trinucleotide Repeat Expansion , Animals , Spinocerebellar Ataxias/genetics , Spinocerebellar Ataxias/therapy , Spinocerebellar Ataxias/metabolism , Peptides/genetics , Dependovirus/genetics , Mice , Ataxin-7/genetics , Ataxin-7/metabolism , Trinucleotide Repeat Expansion/genetics , RNA, Small Interfering/genetics , Genetic Vectors/genetics , Genetic Vectors/administration & dosage , Purkinje Cells/metabolism , Purkinje Cells/pathology , Mice, Transgenic , Cerebellum/metabolism , Cerebellum/pathology , Humans , Genetic Therapy/methods , Alleles
2.
Front Mol Neurosci ; 16: 1122308, 2023.
Article in English | MEDLINE | ID: mdl-37033372

ABSTRACT

Spinocerebellar ataxia type 3 (SCA3/MJD) is a neurodegenerative disease caused by CAG expansion in mutant ATXN3 gene. The resulting PolyQ tract in mutant ataxin-3 protein is toxic to neurons and currently no effective treatment exists. Function of both normal and mutant ataxin-3 is pleiotropic by their interactions and the influence on protein level. Our new preclinical Ki150 model with over 150 CAG/Q in ataxin-3 has robust aggregates indicating the presence of a process that enhances the interaction between proteins. Interactions in large complexes may resemble the real-life inclusion interactions and was never examined before for mutant and normal ataxin-3 and in homozygous mouse model with long polyQ tract. We fractionated ataxin-3-positive large complexes and independently we pulled-down ataxin-3 from brain lysates, and both were followed by proteomics. Among others, mutant ataxin-3 abnormally interacted with subunits of large complexes such as Cct5 and 6, Tcp1, and Camk2a and Camk2b. Surprisingly, the complexes exhibit circular molecular structure which may be linked to the process of aggregates formation where annular aggregates are intermediate stage to fibrils which may indicate novel ataxin-3 mode of interactions. The protein complexes were involved in transport of mitochondria in axons which was confirmed by altered motility of mitochondria along SCA3 Ki150 neurites.

3.
BMC Biol ; 21(1): 17, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36726088

ABSTRACT

BACKGROUND: The majority of genes in the human genome is present in two copies but the expression levels of both alleles is not equal. Allelic imbalance is an aspect of gene expression relevant not only in the context of genetic variation, but also to understand the pathophysiology of genes implicated in genetic disorders, in particular, dominant genetic diseases where patients possess one normal and one mutant allele. Polyglutamine (polyQ) diseases are caused by the expansion of CAG trinucleotide tracts within specific genes. Spinocerebellar ataxia type 3 (SCA3) and Huntington's disease (HD) patients harbor one normal and one mutant allele that differ in the length of CAG tracts. However, assessing the expression level of individual alleles is challenging due to the presence of abundant CAG repeats in the human transcriptome, which make difficult the design of allele-specific methods, as well as of therapeutic strategies to selectively engage CAG sequences in mutant transcripts. RESULTS: To precisely quantify expression in an allele-specific manner, we used SNP variants that are linked to either normal or CAG expanded alleles of the ataxin-3 (ATXN3) and huntingtin (HTT) genes in selected patient-derived cell lines. We applied a SNP-based quantitative droplet digital PCR (ddPCR) protocol for precise determination of the levels of transcripts in cellular and mouse models. For HD, we showed that the process of cell differentiation can affect the ratio between endogenous alleles of HTT mRNA. Additionally, we reported changes in the absolute number of the ATXN3 and HTT transcripts per cell during neuronal differentiation. We also implemented our assay to reliably monitor, in an allele-specific manner, the silencing efficiency of mRNA-targeting therapeutic approaches for HD. Finally, using the humanized Hu128/21 HD mouse model, we showed that the ratio of normal and mutant HTT transgene expression in brain slightly changes with the age of mice. CONCLUSIONS: Using allele-specific ddPCR assays, we observed differences in allele expression levels in the context of SCA3 and HD. Our allele-selective approach is a reliable and quantitative method to analyze low abundant transcripts and is performed with high accuracy and reproducibility. Therefore, the use of this approach can significantly improve understanding of allele-related mechanisms, e.g., related with mRNA processing that may be affected in polyQ diseases.


Subject(s)
Repressor Proteins , Trinucleotide Repeat Expansion , Humans , Mice , Animals , Alleles , Ataxin-3/genetics , Ataxin-3/metabolism , Reproducibility of Results , Trinucleotide Repeat Expansion/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Huntingtin Protein/genetics , Repressor Proteins/genetics
4.
Front Mol Neurosci ; 15: 947490, 2022.
Article in English | MEDLINE | ID: mdl-36176957

ABSTRACT

Adeno-associated virus (AAV)-based brain gene therapies require precision without off-targeting of unaffected neurons to avoid side effects. The cerebellum and its cell populations, including granule and Purkinje cells, are vulnerable to neurodegeneration; hence, conditions to deliver the therapy to specific cell populations selectively remain challenging. We have investigated a system consisting of the AAV serotypes, targeted injections, and transduction modes (direct or retrograde) for targeted delivery of AAV to cerebellar cell populations. We selected the AAV-PHP.eB and AAVrh10 serotypes valued for their retrograde features, and we thoroughly examined their cerebellar transduction pattern when injected into lobules and deep cerebellar nuclei. We found that AAVrh10 is suitable for the transduction of neurons in the mode highly dependent on placing the virus at axonal terminals. The strategy secures selective transduction for granule cells. The AAV-PHP.eB can transduce Purkinje cells and is very selective for the cell type when injected into the DCN at axonal PC terminals. Therefore, both serotypes can be used in a retrograde mode for selective transduction of major neuronal types in the cerebellum. Moreover, our in vivo transduction strategies are suitable for pre-clinical protocol development for gene delivery to granule cells by AAVrh10 and Purkinje cells by AAV-PHPeB.

5.
Nat Commun ; 13(1): 4883, 2022 08 19.
Article in English | MEDLINE | ID: mdl-35986016

ABSTRACT

How animals rewire cellular programs to survive cold is a fascinating problem with potential biomedical implications, ranging from emergency medicine to space travel. Studying a hibernation-like response in the free-living nematode Caenorhabditis elegans, we uncovered a regulatory axis that enhances the natural resistance of nematodes to severe cold. This axis involves conserved transcription factors, DAF-16/FoxO and PQM-1, which jointly promote cold survival by upregulating FTN-1, a protein related to mammalian ferritin heavy chain (FTH1). Moreover, we show that inducing expression of FTH1 also promotes cold survival of mammalian neurons, a cell type particularly sensitive to deterioration in hypothermia. Our findings in both animals and cells suggest that FTN-1/FTH1 facilitates cold survival by detoxifying ROS-generating iron species. We finally show that mimicking the effects of FTN-1/FTH1 with drugs protects neurons from cold-induced degeneration, opening a potential avenue to improved treatments of hypothermia.


Subject(s)
Caenorhabditis elegans Proteins , Hypothermia , Animals , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Ferritins/genetics , Ferritins/metabolism , Forkhead Transcription Factors/metabolism , Iron/metabolism , Mammals/metabolism , Mice , Neurons/metabolism
6.
Mol Ther Nucleic Acids ; 28: 702-715, 2022 Jun 14.
Article in English | MEDLINE | ID: mdl-35664700

ABSTRACT

Among the many proposed therapeutic strategies for Huntington's disease (HD), allele-selective therapies are the most desirable but also the most challenging. RNA interference (RNAi) tools that target CAG repeats selectively reduce the mutant huntingtin level in cellular models of HD. The purpose of this study was to test the efficacy, selectivity, and safety of two vector-based RNAi triggers in an animal model of HD. CAG repeat-targeting short hairpin RNA (shRNA) and artificial miRNA (amiRNA) were delivered to the brains of YAC128 mice via intrastriatal injection of AAV5 vectors. Molecular tests demonstrated that both the shRNA and amiRNA reduced the mutant huntingtin level by 50% without influencing endogenous mouse huntingtin. In addition, a concentration-dependent reduction in HTT aggregates in the striatum was observed. In contrast to the shRNA, the amiRNA was well tolerated and did not show signs of toxicity during the course of the experiment up to 20 weeks post injection. Interestingly, amiRNA treatment reduced the spleen weight to values characteristic of healthy (WT) mice and improved motor performance on the static rod test. These preclinical data demonstrate that the CAG-targeting strategy and amiRNA could make an original and valuable contribution to currently used therapeutic approaches for HD.

7.
J Neurochem ; 162(1): 89-108, 2022 07.
Article in English | MEDLINE | ID: mdl-34519052

ABSTRACT

The studies of psychedelics, especially psychedelic tryptamines like psilocybin, are rapidly gaining interest in neuroscience research. Much of this interest stems from recent clinical studies demonstrating that they have a unique ability to improve the debilitating symptoms of major depressive disorder (MDD) long-term after only a single treatment. Indeed, the Food and Drug Administration (FDA) has recently designated two Phase III clinical trials studying the ability of psilocybin to treat forms of MDD with "Breakthrough Therapy" status. If successful, the use of psychedelics to treat psychiatric diseases like depression would be revolutionary. As more evidence appears in the scientific literature to support their use in psychiatry to treat MDD on and substance use disorders (SUD), recent studies with rodents revealed that their therapeutic effects might extend beyond treating MDD and SUD. For example, psychedelics may have efficacy in the treatment and prevention of brain injury and neurodegenerative diseases such as Alzheimer's Disease. Preclinical work has highlighted psychedelics' ability to induce neuroplasticity and synaptogenesis, and neural progenitor cell proliferation. Psychedelics may also act as immunomodulators by reducing levels of proinflammatory biomarkers, including IL-1ß, IL-6, and tumor necrosis factor-α (TNF-α). Their exact molecular mechanisms, and induction of cellular interactions, especially between neural and glial cells, leading to therapeutic efficacy, remain to be determined. In this review, we discuss recent findings and information on how psychedelics may act therapeutically on cells within the central nervous system (CNS) during brain injuries and neurodegenerative diseases.


Subject(s)
Depressive Disorder, Major , Hallucinogens , Neurodegenerative Diseases , Neurology , Psychiatry , Substance-Related Disorders , Depressive Disorder, Major/drug therapy , Hallucinogens/pharmacology , Hallucinogens/therapeutic use , Humans , Neurodegenerative Diseases/drug therapy , Psilocybin/therapeutic use
8.
Front Cell Dev Biol ; 9: 642773, 2021.
Article in English | MEDLINE | ID: mdl-34277598

ABSTRACT

Polyglutamine (PolyQ) diseases are neurodegenerative disorders caused by the CAG repeat expansion mutation in affected genes resulting in toxic proteins containing a long chain of glutamines. There are nine PolyQ diseases: Huntington's disease (HD), spinocerebellar ataxias (types 1, 2, 3, 6, 7, and 17), dentatorubral-pallidoluysian atrophy (DRPLA), and spinal bulbar muscular atrophy (SBMA). In general, longer CAG expansions and longer glutamine tracts lead to earlier disease presentations in PolyQ patients. Rarely, cases of extremely long expansions are identified for PolyQ diseases, and they consistently lead to juvenile or sometimes very severe infantile-onset polyQ syndromes. In apparent contrast to the very long CAG tracts, shorter CAGs and PolyQs in proteins seems to be the evolutionary factor enhancing human cognition. Therefore, polyQ tracts in proteins can be modifiers of brain development and disease drivers, which contribute neurodevelopmental phenotypes in juvenile- and adult-onset PolyQ diseases. Therefore we performed a bioinformatics review of published RNAseq polyQ expression data resulting from the presence of polyQ genes in search of neurodevelopmental expression patterns and comparison between diseases. The expression data were collected from cell types reflecting stages of development such as iPSC, neuronal stem cell, neurons, but also the adult patients and models for PolyQ disease. In addition, we extended our bioinformatic transcriptomic analysis by proteomics data. We identified a group of 13 commonly downregulated genes and proteins in HD mouse models. Our comparative bioinformatic review highlighted several (neuro)developmental pathways and genes identified within PolyQ diseases and mouse models responsible for neural growth, synaptogenesis, and synaptic plasticity.

9.
Front Mol Neurosci ; 14: 658339, 2021.
Article in English | MEDLINE | ID: mdl-34220448

ABSTRACT

Spinocerebellar ataxia type 3 (SCA3/MJD) is caused by CAG expansion mutation resulting in a long polyQ domain in mutant ataxin-3. The mutant protein is a special type of protease, deubiquitinase, which may indicate its prominent impact on the regulation of cellular proteins levels and activity. Yet, the global model picture of SCA3 disease progression on the protein level, molecular pathways in the brain, and neurons, is largely unknown. Here, we investigated the molecular SCA3 mechanism using an interdisciplinary research paradigm combining behavioral and molecular aspects of SCA3 in the knock-in ki91 model. We used the behavior, brain magnetic resonance imaging (MRI) and brain tissue examination to correlate the disease stages with brain proteomics, precise axonal proteomics, neuronal energy recordings, and labeling of vesicles. We have demonstrated that altered metabolic and mitochondrial proteins in the brain and the lack of weight gain in Ki91 SCA3/MJD mice is reflected by the failure of energy metabolism recorded in neonatal SCA3 cerebellar neurons. We have determined that further, during disease progression, proteins responsible for metabolism, cytoskeletal architecture, vesicular, and axonal transport are disturbed, revealing axons as one of the essential cell compartments in SCA3 pathogenesis. Therefore we focus on SCA3 pathogenesis in axonal and somatodendritic compartments revealing highly increased axonal localization of protein synthesis machinery, including ribosomes, translation factors, and RNA binding proteins, while the level of proteins responsible for cellular transport and mitochondria was decreased. We demonstrate the accumulation of axonal vesicles in neonatal SCA3 cerebellar neurons and increased phosphorylation of SMI-312 positive adult cerebellar axons, which indicate axonal dysfunction in SCA3. In summary, the SCA3 disease mechanism is based on the broad influence of mutant ataxin-3 on the neuronal proteome. Processes central in our SCA3 model include disturbed localization of proteins between axonal and somatodendritic compartment, early neuronal energy deficit, altered neuronal cytoskeletal structure, an overabundance of various components of protein synthesis machinery in axons.

10.
BioTechnologia (Pozn) ; 102(4): 473-478, 2021.
Article in English | MEDLINE | ID: mdl-36605599

ABSTRACT

Adeno-associated virus (AAV) vectors delivered at the axonal terminals can be retrogradely transported toward neuronal cell bodies throughout the axons. This retrograde phenomenon can serve as a powerful tool for experiments and gene therapy using AAVs. The advantages of using AAV vectors delivered retrogradely are greater cellular specificity, high transduction efficiency, increased safety, and absence of cytotoxicity. The numerous axonal projections in the nervous system provide a neuronal network for the convenient and widespread distribution of viral vectors between adjacent brain structures and over long distances. The retrograde efficiency of AAVs in the neurons of the central nervous system (CNS) depends on AAV serotype, the region of injection, and the type of neurons. In this review, we describe AAV serotypes and their retrograde transport properties after injection and discuss brain structures or types of cells that are targeted for retrograde transport. In particular, AAV serotypes 2, 5, 8, 9, rh10, and PHP.eB are extensively reviewed as they demonstrate retrograde transport potential suitable for use in gene therapy applications.

11.
Mol Neurobiol ; 56(12): 8168-8202, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31201651

ABSTRACT

Spinocerebellar ataxia type 3 (SCA3/MJD) is a polyQ neurodegenerative disease where the presymptomatic phase of pathogenesis is unknown. Therefore, we investigated the molecular network of transcriptomic and proteomic triggers in young presymptomatic SCA3/MJD brain from Ki91 knock-in mouse. We found that transcriptional dysregulations resulting from mutant ataxin-3 are not occurring in young Ki91 mice, while old Ki91 mice and also postmitotic patient SCA3 neurons demonstrate the late transcriptomic changes. Unlike the lack of early mRNA changes, we have identified numerous early changes of total proteins and phosphoproteins in 2-month-old Ki91 mouse cortex and cerebellum. We discovered the network of processes in presymptomatic SCA3 with three main groups of disturbed processes comprising altered proteins: (I) modulation of protein levels and DNA damage (Pabpc1, Ddb1, Nedd8), (II) formation of neuronal cellular structures (Tubb3, Nefh, p-Tau), and (III) neuronal function affected by processes following perturbed cytoskeletal formation (Mt-Co3, Stx1b, p-Syn1). Phosphoproteins downregulate in the young Ki91 mouse brain and their phosphosites are associated with kinases that interact with ATXN3 such as casein kinase, Camk2, and kinases controlled by another Atxn3 interactor p21 such as Gsk3, Pka, and Cdk kinases. We conclude that the onset of SCA3 pathology occurs without altered transcript level and is characterized by changed levels of proteins responsible for termination of translation, DNA damage, spliceosome, and protein phosphorylation. This disturbs global cellular processes such as cytoskeleton and transport of vesicles and mitochondria along axons causing energy deficit and neurodegeneration also manifesting in an altered level of transcripts at later ages.


Subject(s)
Ataxin-3/metabolism , Brain/metabolism , Machado-Joseph Disease/metabolism , Nerve Tissue Proteins/metabolism , Phosphoproteins/metabolism , Transcription, Genetic/physiology , Age Factors , Animals , Ataxin-3/genetics , Brain/pathology , Cells, Cultured , Humans , Machado-Joseph Disease/genetics , Mice , Mice, 129 Strain , Mice, Inbred C57BL , Mice, Transgenic , Nerve Tissue Proteins/genetics , Phosphoproteins/genetics
12.
Front Cell Neurosci ; 12: 528, 2018.
Article in English | MEDLINE | ID: mdl-30713489

ABSTRACT

In Huntington disease (HD) subtle symptoms in patients may occur years or even decades prior to diagnosis. HD changes at a molecular level may begin as early as in cells that are non-lineage committed such as stem cells or HD patients induced pluripotent stem cells (iPSCs) offering opportunity to enhance the understanding of the HD pathogenesis. In addition, juvenile HD non-linage committed cells were previously not directly investigated in detail by RNA-seq. In the present manuscript, we define the early HD and juvenile HD transcriptional alterations using 6 human HD iPS cell lines from two patients, one with 71 CAGs and one with 109 CAG repeats. We identified 107 (6 HD lines), 198 (3 HD71Q lines) and 217 (3 HD109Q lines) significantly dysregulated mRNAs in each comparison group. The analyses showed that many of dysregulated transcripts in HD109Q iPSC lines are involved in DNA damage response and apoptosis, such as CCND1, CDKN1A, TP53, BAX, TNFRSF10B, TNFRSF10C, TNFRSF10D, DDB2, PLCB1, PRKCQ, HSH2D, ZMAT3, PLK2, and RPS27L. Most of them were identified as downregulated and their proteins are direct interactors with TP53. HTT probably alters the level of several TP53 interactors influencing apoptosis. This may lead to accumulation of an excessive number of progenitor cells and potential disruption of cell differentiation and production of mature neurons. In addition, HTT effects on cell polarization also demonstrated in the analysis may result in a generation of incorrect progenitors. Bioinformatics analysis of transcripts dysregulated in HD71Q iPSC lines showed that several of them act as transcription regulators during the early multicellular stages of development, such as ZFP57, PIWIL2, HIST1H3C, and HIST1H2BB. Significant upregulation of most of these transcripts may lead to a global increase in expression level of genes involved in pathways critical for embryogenesis and early neural development. In addition, MS analysis revealed altered levels of TP53 and ZFP30 proteins reflecting the functional significance of dysregulated mRNA levels of these proteins which were associated with apoptosis and DNA binding. Our finding very well corresponds to the fact that mutation in the HTT gene may cause precocious neurogenesis and identifies pathways likely disrupted during development.

13.
Mol Neurobiol ; 55(4): 3351-3371, 2018 Apr.
Article in English | MEDLINE | ID: mdl-28497201

ABSTRACT

Huntington disease (HD) is a dominantly inherited disorder caused by a CAG expansion mutation in the huntingtin (HTT) gene, which results in the HTT protein that contains an expanded polyglutamine tract. The adult form of HD exhibits a late onset of the fully symptomatic phase. However, there is also a long presymptomatic phase, which has been increasingly investigated and recognized as important for the disease development. Moreover, the juvenile form of HD, evoked by a higher number of CAG repeats, resembles a neurodevelopmental disorder and has recently been the focus of additional interest. Multiple lines of data, such as the developmental necessity of HTT, its role in the cell cycle and neurogenesis, and findings from pluripotent stem cells, suggest the existence of a neurodevelopmental component in HD pathogenesis. Therefore, we discuss the early molecular pathogenesis of HD in pluripotent and neural stem cells, with respect to the neurodevelopmental aspects of HD.


Subject(s)
Huntington Disease/pathology , Neural Stem Cells/pathology , Neurodevelopmental Disorders/pathology , Animals , Disease Models, Animal , Humans , Huntingtin Protein/metabolism , Huntington Disease/genetics , Neurodevelopmental Disorders/genetics , Trinucleotide Repeat Expansion/genetics
15.
Front Mol Neurosci ; 10: 253, 2017.
Article in English | MEDLINE | ID: mdl-28848389

ABSTRACT

Huntington disease (HD) is an incurable neurodegenerative disorder caused by expansion of CAG repeats in huntingtin (HTT) gene, resulting in expanded polyglutamine tract in HTT protein. Although, HD has its common onset in adulthood, subtle symptoms in patients may occur decades before diagnosis, and molecular and cellular changes begin much earlier, even in cells that are not yet lineage committed such as stem cells. Studies in induced pluripotent stem cell (iPSC) HD models have demonstrated that multiple molecular processes are altered by the mutant HTT protein and suggested its silencing as a promising therapeutic strategy. Therefore, we aimed to generate HD iPS cells with stable silencing of HTT and further to investigate the effects of HTT knock-down on deregulations of signaling pathways e.g., p53 downregulation, present in cells already in pluripotent state. We designed a gene silencing strategy based on RNAi cassette in piggyBAC vector for constant shRNA expression. Using such system we delivered and tested several shRNA targeting huntingtin in mouse HD YAC128 iPSC and human HD109, HD71, and Control iPSC. The most effective shRNA (shHTT2) reagent stably silenced HTT in all HD iPS cells and remained active upon differentiation to neural stem cells (NSC). When investigating the effects of HTT silencing on signaling pathways, we found that in mouse HD iPSC lines expressing shRNA the level of mutant HTT inversely correlated with p53 levels, resulting in p53 level normalization upon silencing of mutant HTT. We also found that p53 deregulation continues into the NSC developmental stage and it was reversed upon HTT silencing. In addition, we observed subtle effects of silencing on proteins of Wnt/ß-catenin and ERK1/2 signaling pathways. In summary, we successfully created the first mouse and human shRNA-expressing HD iPS cells with stable and continuous HTT silencing. Moreover, we demonstrated reversal of HD p53 phenotype in mouse HD iPSC, therefore, the stable knockdown of HTT is well-suited for investigation on HD cellular pathways, and is potentially useful as a stand-alone therapy or component of cell therapy. In addition, the total HTT knock-down in our human cells has further implications for mutant allele selective approach in iPSC.

16.
Mol Brain ; 8(1): 69, 2015 Oct 29.
Article in English | MEDLINE | ID: mdl-26515641

ABSTRACT

BACKGROUND: The polyglutamine (polyQ) family of disorders comprises 9 genetic diseases, including several types of ataxia and Huntington disease. Approximately two decades of investigation and the creation of more than 130 mouse models of polyQ disorders have revealed many similarities between these diseases. The disorders share common mutation types, neurological characteristics and certain aspects of pathogenesis, including morphological and physiological neuronal alterations. All of the diseases still remain incurable. DESCRIPTION: The large volume of information collected as a result of the investigation of polyQ models currently represents a great potential for searching, comparing and translating pathogenesis and therapeutic information between diseases. Therefore, we generated a public database comprising the polyQ mouse models, phenotypes and therapeutic interventions tested in vivo. The database is available at http://conyza.man.poznan.pl/ . CONCLUSION: The use of the database in the field of polyQ diseases may accelerate research on these and other neurodegenerative diseases and provide new perspectives for future investigation.


Subject(s)
Databases, Protein , Internet , Neurodegenerative Diseases/pathology , Peptides/metabolism , Research , Animals , Disease Models, Animal , Mice , Phenotype , Search Engine , User-Computer Interface
17.
Dis Model Mech ; 8(9): 1047-57, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26092128

ABSTRACT

Huntington disease (HD) is a brain disorder characterized by the late onset of motor and cognitive symptoms, even though the neurons in the brain begin to suffer dysfunction and degeneration long before symptoms appear. There is currently no cure. Several molecular and developmental effects of HD have been identified using neural stem cells (NSCs) and differentiated cells, such as neurons and astrocytes. Still, little is known regarding the molecular pathogenesis of HD in pluripotent cells, such as embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs). Therefore, we examined putative signaling pathways and processes involved in HD pathogenesis in pluripotent cells. We tested naïve mouse HD YAC128 iPSCs and two types of human HD iPSC that were generated from HD and juvenile-HD patients. Surprisingly, we found that a number of changes affecting cellular processes in HD were also present in undifferentiated pluripotent HD iPSCs, including the dysregulation of the MAPK and Wnt signaling pathways and the dysregulation of the expression of genes related to oxidative stress, such as Sod1. Interestingly, a common protein interactor of the huntingtin protein and the proteins in the above pathways is p53, and the expression of p53 was dysregulated in HD YAC128 iPSCs and human HD iPSCs. In summary, our findings demonstrate that multiple molecular pathways that are characteristically dysregulated in HD are already altered in undifferentiated pluripotent cells and that the pathogenesis of HD might begin during the early stages of life.


Subject(s)
Huntington Disease/metabolism , Induced Pluripotent Stem Cells/cytology , Oxidative Stress , Signal Transduction , Tumor Suppressor Protein p53/metabolism , Animals , Base Sequence , Cell Differentiation , Child , Disease Models, Animal , Embryonic Stem Cells/cytology , Enzyme Activation , Humans , Huntingtin Protein , MAP Kinase Signaling System , Mice , Molecular Sequence Data , Mutation , Nerve Tissue Proteins/genetics , Nuclear Proteins/genetics , Phosphorylation , Superoxide Dismutase/metabolism , Superoxide Dismutase-1 , Wnt Proteins/metabolism , Young Adult , beta Catenin/metabolism
18.
Neurobiol Dis ; 73: 174-88, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25301414

ABSTRACT

Spinocerebellar ataxia type 3 (SCA3/MJD) is a neurodegenerative disease triggered by the expansion of CAG repeats in the ATXN3 gene. Here, we report the generation of the first humanized ataxin-3 knock-in mouse model (Ki91), which provides insights into the neuronal and glial pathology of SCA3/MJD. First, mutant ataxin-3 accumulated in cell nuclei across the Ki91 brain, showing diffused immunostaining and forming intranuclear inclusions. The humanized allele revealed expansion and contraction of CAG repeats in intergenerational transmissions. CAG mutation also exhibited age-dependent tissue-specific expansion, which was most prominent in the cerebellum, pons and testes of Ki91 animals. Moreover, Ki91 mice displayed neuroinflammatory processes, showing astrogliosis in the cerebellar white matter and the substantia nigra that paralleled the transcriptional deregulation of Serpina3n, a molecular sign of neurodegeneration and brain damage. Simultaneously, the cerebellar Purkinje cells in Ki91 mice showed neurodegeneration, a pronounced decrease in Calbindin D-28k immunoreactivity and a mild decrease in cell number, thereby modeling the degeneration of the cerebellum observed in SCA3. Moreover, these molecular and cellular neuropathologies were accompanied by late behavioral deficits in motor coordination observed in rotarod and static rod tests in heterozygous Ki91 animals. In summary, we created an ataxin-3 knock-in mouse model that combines the molecular and behavioral disease phenotypes with the genetic features of SCA3. This model will be very useful for studying the pathogenesis and responses to therapy of SCA3/MJD and other polyQ disorders.


Subject(s)
Brain/pathology , Machado-Joseph Disease/genetics , Machado-Joseph Disease/pathology , Nerve Tissue Proteins/genetics , Neuroglia/pathology , Neurons/pathology , Nuclear Proteins/genetics , Repressor Proteins/genetics , Animals , Ataxin-3 , Calbindin 1/metabolism , Disease Models, Animal , Encephalitis/etiology , Female , Gene Expression Regulation/genetics , Humans , Intranuclear Inclusion Bodies/metabolism , Intranuclear Inclusion Bodies/pathology , Machado-Joseph Disease/complications , Male , Mice , Mice, Transgenic , Nerve Tissue Proteins/metabolism , Nuclear Proteins/metabolism , Repressor Proteins/metabolism , Sensation Disorders/etiology , Trinucleotide Repeats/genetics
19.
Mol Neurobiol ; 46(2): 430-66, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22944909

ABSTRACT

Mouse models of human diseases are created both to understand the pathogenesis of the disorders and to find successful therapies for them. This work is the second part in a series of reviews of mouse models of polyglutamine (polyQ) hereditary disorders and focuses on in vivo experimental therapeutic approaches. Like part I of the polyQ mouse model review, this work is supplemented with a table that contains data from experimental studies of therapeutic approaches in polyQ mouse models. The aim of this review was to characterize the benefits and outcomes of various therapeutic strategies in mouse models. We examine whether the therapeutic strategies are specific to a single disease or are applicable to more than one polyQ disorder in mouse models. In addition, we discuss the suitability of mouse models in therapeutic approaches. Although the majority of therapeutic studies were performed in mouse models of Huntington disease, similar strategies were also used in other disease models.


Subject(s)
Databases as Topic , Disease Models, Animal , Neurodegenerative Diseases/pathology , Neurodegenerative Diseases/therapy , Peptides/metabolism , Animals , Humans , Mice , Molecular Targeted Therapy , Neurodegenerative Diseases/metabolism , Phenotype
20.
Mol Neurobiol ; 46(2): 393-429, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22956270

ABSTRACT

Polyglutamine (polyQ) disorders share many similarities, such as a common mutation type in unrelated human causative genes, neurological character, and certain aspects of pathogenesis, including morphological and physiological neuronal alterations. The similarities in pathogenesis have been confirmed by findings that some experimental in vivo therapy approaches are effective in multiple models of polyQ disorders. Additionally, mouse models of polyQ diseases are often highly similar between diseases with respect to behavior and the features of the disease. The common features shared by polyQ mouse models may facilitate the investigation of polyQ disorders and may help researchers explore the mechanisms of these diseases in a broader context. To provide this context and to promote the understanding of polyQ disorders, we have collected and analyzed research data about the characterization and treatment of mouse models of polyQ diseases and organized them into two complementary Excel data tables. The data table that is presented in this review (Part I) covers the behavioral, molecular, cellular, and anatomic characteristics of polyQ mice and contains the most current knowledge about polyQ mouse models. The structure of this data table is designed in such a way that it can be filtered to allow for the immediate retrieval of the data corresponding to a single mouse model or to compare the shared and unique aspects of many polyQ models. The second data table, which is presented in another publication (Part II), covers therapeutic research in mouse models by summarizing all of the therapeutic strategies employed in the treatment of polyQ disorders, phenotypes that are used to examine the effects of the therapy, and therapeutic outcomes.


Subject(s)
Databases as Topic , Disease Models, Animal , Neurodegenerative Diseases/metabolism , Neurodegenerative Diseases/pathology , Peptides/metabolism , Animals , Disease Progression , Mice , Mice, Transgenic
SELECTION OF CITATIONS
SEARCH DETAIL
...