Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Folia Neuropathol ; 60(1): 1-9, 2022.
Article in English | MEDLINE | ID: mdl-35359141

ABSTRACT

Nowadays it is observed that the number of stem-cell based experimental therapies in neurodegenerative disorders is massively increasing. Most of the clinical trials registered to date have been based on autologous mesenchymal stem/stromal cells (MSC) obtained from somatic tissues. In the conducted clinical trials neither serious side effects, nor statistically significant improvement were observed. The lack of statistical significance could result from a relatively small number of patients involved in clinical trials or highly incoherent study protocols. However, most clinical groups describe a trend towards improvement in MSC-treated patients. Hence, the question arises which factors associated with MSC-based therapy may be the key and result in better therapeutic response. In the presented paper, we summarize, in our opinion, the most important factors that could increase the effectiveness of this therapy.


Subject(s)
Central Nervous System Diseases , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Central Nervous System Diseases/etiology , Central Nervous System Diseases/therapy , Humans , Mesenchymal Stem Cell Transplantation/adverse effects , Mesenchymal Stem Cell Transplantation/methods
2.
Wound Repair Regen ; 30(3): 303-316, 2022 05.
Article in English | MEDLINE | ID: mdl-35384136

ABSTRACT

The application of mesenchymal stem/stromal cells (MSC) in regenerative medicine offers hope for the effective treatment of incurable or difficult-to-heal diseases. However, it requires the development of unified protocols for both safe and efficient cell acquisition and clinical usage. The therapeutic effect of fat grafts (containing stem cells) in non-healing wounds has been discussed in previous studies, although the application requires local or general anaesthesia. The treatment of MSC derived from adipose tissue (ASC) could be a less invasive method, and efficient delivery could lead to more favourable outcomes, which should encourage clinicians to use such therapeutic approaches more frequently. Therefore, the aim of this study was to optimise the methods of ASC isolation, culture and administration while maintaining their high survival, proliferation and colonisation potential. The ASC were isolated by an enzymatic method and were characterised according to International Society for Cellular Therapy and International Federation for Adipose Therapeutics and Science guidelines. To assess the opportunity to obtain a sufficient number of cells for transplantation, long-term cell cultures in two oxygen concentrations (5% vs. 21%) were conducted. For these cultures, the population doubling time, the cumulative time for cell population doublings and the rate of cell senescence were estimated. In a developed and pre-defined protocol, ASC can be efficiently cultured at physiological oxygen concentrations (5%), which leads to faster proliferation and slower cell senescence. Subsequently, to select the optimal and minimally invasive methods of ASC transplantation, direct cell application with an irrigator or with skin dressings was analysed. Our results confirmed that both the presented methods of cell application allow for the safe delivery of isolated ASC into wounds without losing their vitality. Cells propagated in the described conditions and applied in non-invasive cell application (with an irrigation system and dressings) to treat chronic wounds can be a potential alternative or supplement to more invasive clinical approaches.


Subject(s)
Mesenchymal Stem Cells , Wound Healing , Adipose Tissue , Oxygen , Stem Cells
3.
Cells ; 10(6)2021 06 11.
Article in English | MEDLINE | ID: mdl-34208414

ABSTRACT

Currently, the number of stem-cell based experimental therapies in neurological injuries and neurodegenerative disorders has been massively increasing. Despite the fact that we still have not obtained strong evidence of mesenchymal stem/stromal cells' neurogenic effectiveness in vivo, research may need to focus on more appropriate sources that result in more therapeutically promising cell populations. In this study, we used dedifferentiated fat cells (DFAT) that are proven to demonstrate more pluripotent abilities in comparison with standard adipose stromal cells (ASCs). We used the ceiling culture method to establish DFAT cells and to optimize culture conditions with the use of a physioxic environment (5% O2). We also performed neural differentiation tests and assessed the neurogenic and neuroprotective capability of both DFAT cells and ASCs. Our results show that DFAT cells may have a better ability to differentiate into oligodendrocytes, astrocytes, and neuron-like cells, both in culture supplemented with N21 and in co-culture with oxygen-glucose-deprived (OGD) hippocampal organotypic slice culture (OHC) in comparison with ASCs. Results also show that DFAT cells have a different secretory profile than ASCs after contact with injured tissue. In conclusion, DFAT cells constitute a distinct subpopulation and may be an alternative source in cell therapy for the treatment of nervous system disorders.


Subject(s)
Adipocytes/cytology , Adipose Tissue/cytology , Cell Differentiation , Cell Lineage , Mesenchymal Stem Cells/cytology , Neurogenesis , Neuroprotective Agents/metabolism , Adipocytes/metabolism , Adipose Tissue/metabolism , Cells, Cultured , Hippocampus/cytology , Hippocampus/metabolism , Humans , Mesenchymal Stem Cells/metabolism
4.
J Clin Med ; 10(9)2021 Apr 21.
Article in English | MEDLINE | ID: mdl-33919308

ABSTRACT

Treatment with Mesenchymal Stem/Stromal Cells (MSCs) in clinical trials is becoming one of the most-popular and fast-developing branches of modern regenerative medicine, as it is still in an experimental phase. The cross-section of diseases to which these cells are applied is very wide, ranging from degenerative diseases, through autoimmune processes and to acute inflammatory diseases, e.g., viral infections. Indeed, now that first clinical trials applying MSCs against COVID-19 have started, important questions concern not only the therapeutic properties of MSCs, but also the changes that might occur in the cell features as a response to the "cytokine storm" present in the acute phase of an infection and capable of posing a risk to a patient. The aim of our study was thus to assess changes potentially occurring in the biology of MSCs in the active inflammatory environment, e.g., in regards to the cell cycle, cell migration and secretory capacity. The study using MSCs derived from Wharton's jelly (WJ-MSCs) was conducted under two aerobic conditions: 21% O2 vs. 5% O2, since oxygen concentration is one of the key factors in inflammation. Under both oxygen conditions cells were exposed to proinflammatory cytokines involved significantly in acute inflammation, i.e., IFNγ, TNFα and IL-1ß at different concentrations. Regardless of the aerobic conditions, WJ-MSCs in the inflammatory environment do not lose features typical for mesenchymal cells, and their proliferation dynamic remains unchanged. Sudden fluctuations in proliferation, the early indicator of potential genetic disturbance, were not observed, while the cells' migration activity increased. The presence of pro-inflammatory factors was also found to increase the secretion of such anti-inflammatory cytokines as IL-4 and IL-10. It is concluded that the inflammatory milieu in vitro does not cause phenotype changes or give rise to proliferation disruption of WJ-MSCs, and nor does it inhibit the secretory properties providing for their use against acute inflammation.

5.
Neural Regen Res ; 16(5): 856-864, 2021 May.
Article in English | MEDLINE | ID: mdl-33229720

ABSTRACT

The reconstruction of nerve continuity after traumatic nerve injury is the gold standard in hand surgery. Immediate, tension-free, end-to-end nerve suture ensures the best prognosis. The recovery is mostly promising; however, in a few cases, insufficient outcomes in motor or sensory function are observed. Intra- and extra-fascicular scarring accompanies the nerve regeneration process and limits final outcomes. Secondary nerve release in those cases is recommended. Unfortunately, scarring recurrence cannot be eliminated after secondary revision and neurolysis. The supportive influences of mesenchymal stem cells in the process of nerve regeneration were observed in many preclinical studies. However, a limited number of studies in humans have analyzed the clinical usage of mesenchymal stem cells in peripheral nerve reconstruction and revisions. The objective of this study was to evaluate the effects of undifferentiated adipose-derived stromal/stem cell injection during a last-chance surgery (neurolysis, nerve release) on a previously reconstructed nerve. Three patients (one female, two males; mean age 59 ± 4.5 years at the time of injury), who experienced failure of reconstructions of median and ulnar nerves, were included in this study. During the revision surgery, nerve fascicles were released, and adipose-derived stromal/stem cells were administered through microinjections along the fascicles and around the adjacent tissues after external neurolysis. During 36 months of follow-up, patients noticed gradual signs of sensory and in consequence functional recovery. No adverse effects were observed. Simultaneous nerve release with adipose-derived stromal/stem cells support is a promising method in patients who need secondary nerve release after nerve reconstruction. This method can constitute an alternative procedure in patients experiencing recovery failure and allow improvement in cases of limited nerve regeneration. The study protocol was approved by the Institutional Review Board (IRB) at the Centre of Postgraduate Medical Education (No. 62/PB/2016) on September 14, 2016.

6.
Sci Rep ; 10(1): 16946, 2020 10 09.
Article in English | MEDLINE | ID: mdl-33037314

ABSTRACT

Tuning stem cells microenvironment in vitro may influence their regenerative properties. In this study Wharton's Jelly-derived mesenchymal stem cells (WJ-MSCs) were encapsulated in 3D hydrogels derived from human fibrin (FB) or platelet lysate (PL) and the oxygen level was adjusted to physiological normoxia (5% O2). The influence of the type of the scaffold and physiological normoxia conditions was tested on the WJ-MSCs' survivability, proliferation, migratory potential, the level of expression of selected trophic factors, cytokines, and neural markers. Encapsulated WJ-MSCs revealed high survivability, stable proliferation rate, and ability to migrate out of the hydrogel and the up-regulated expression of all tested factors, as well as the increased expression of neural differentiation markers. Physiological normoxia stimulated proliferation of encapsulated WJ-MSCs and significantly enhanced their neuronal, but not glial, differentiation. Ex vivo studies with indirect co-culture of organotypic hippocampal slices and cell-hydrogel bio-constructs revealed strong neuroprotective effect of WJ-MSCs against neuronal death in the CA1 region of the rat hippocampus. This effect was potentiated further by FB scaffolds under 5% O2 conditions. Our results indicating significant effect of oxygen and 3D cytoarchitecture suggest the urgent need for further optimization of the microenvironmental conditions to improve therapeutical competence of the WJ-MSCs population.


Subject(s)
Mesenchymal Stem Cells/cytology , Neuroprotection/physiology , Stem Cell Niche/physiology , Wharton Jelly/cytology , Animals , Antigens, Differentiation/metabolism , Biomimetics/methods , Cell Differentiation/physiology , Cell Proliferation/physiology , Cells, Cultured , Coculture Techniques/methods , Cytokines/metabolism , Hippocampus/physiology , Humans , Hydrogels/pharmacology , Rats , Rats, Wistar , Umbilical Cord/metabolism
7.
Stem Cells Int ; 2020: 1321283, 2020.
Article in English | MEDLINE | ID: mdl-32300364

ABSTRACT

OBJECTIVE: Bone defects or atrophy may arise as a consequence of injury, inflammation of various etiologies, and neoplastic or traumatic processes or as a result of surgical procedures. Sometimes the regeneration process of bone loss is impaired, significantly slowed down, or does not occur, e.g., in congenital defects. For the bone defect reconstruction, a piece of the removed bone from ala of ilium or bone transplantation from a decedent is used. Replacement of the autologous or allogenic source of the bone-by-bone substitute could reduce the number of surgeries and time in the pharmacological coma during the reconstruction of the bone defect. Application of mesenchymal stem cells in the reconstruction surgery may have positive influence on tissue regeneration by secretion of angiogenic factors, recruitment of other MSCs, or differentiation into osteoblasts. Materials and Methods. Mesenchymal stem cells derived from the umbilical cord (Wharton's jelly (WJ-MSC)) were cultured in GMP-grade DMEM low glucose supplemented with heparin, 10% platelet lysate, glucose, and antibiotics. In vitro WJ-MSCs were seeded on the bone substitute Bio-Oss Collagen® and cultured in the StemPro® Osteogenesis Differentiation Kit. During the culture on the 1st, 7th, 14th, and 21st day (day in vitro (DIV)), we analyzed viability (confocal microscopy) and adhesion capability (electron microscopy) of WJ-MSC on Bio-Oss scaffolds, gene expression (qPCR), and secretion of proteins (Luminex). In vivo Bio-Oss® scaffolds with WJ-MSC were transplanted to trepanation holes in the cranium to obtain their overgrowth. The computed tomography was performed 7, 14, and 21 days after surgery to assess the regeneration. RESULTS: The Bio-Oss® scaffold provides a favourable environment for WJ-MSC survival. WJ-MSCs in osteodifferentiation medium are able to attach and proliferate on Bio-Oss® scaffolds. Results obtained from qPCR and Luminex® indicate that WJ-MSCs possess the ability to differentiate into osteoblast-like cells and may induce osteoclastogenesis, angiogenesis, and mobilization of host MSCs. In animal studies, WJ-MSCs seeded on Bio-Oss® increased the scaffold integration with host bone and changed their morphology to osteoblast-like cells. CONCLUSIONS: The presented construct consisted of Bio-Oss®, the scaffold with high flexibility and plasticity, approved for clinical use with seeded immunologically privileged WJ-MSC which may be considered reconstructive therapy in bone defects.

8.
Stem Cells Int ; 2020: 7104243, 2020.
Article in English | MEDLINE | ID: mdl-32190059

ABSTRACT

Objective/Purpose. Evaluation of efficacy and safety of autologous adipose-derived regenerative cells (ADRCs) treatment in autoimmune refractory epilepsy. Patients. Six patients with proven or probable autoimmune refractory epilepsy (2 with Rasmussen encephalitis, 2 with antineuronal autoantibodies in serum, and 2 with possible FIRES) were included in the project with approval of the Bioethics Committee. METHOD: Intrathecal injection of autologous ADRC acquired through liposuction followed by enzymatic isolation was performed. The procedure was repeated 3 times every 3 months with each patient. Neurological status, brain MRI, cognitive function, and antiepileptic effect were monitored during 12 months. RESULTS: Immediately after the procedure, all patients were in good condition. In some cases, transient mildly elevated body temperature, pain in regions of liposuction, and slight increasing number of seizures during 24 hours were observed. During the next months, some improvements in school, social functioning, and manual performance were observed in all patients. One patient has been seizure free up to the end of trial. In other patients, frequency of seizures was different: from reduced number to the lack of improvement (3-year follow-up). CONCLUSION: Autologous ADRC therapy may emerge as a promising option for some patients with autoimmune refractory epilepsy. Based on our trial and other clinical data, the therapy appears to be safe and feasible. Antiepileptic efficacy proved to be various; however, some abilities improved in all children. No signs of psychomotor regression were observed during the first year following the treatment.

9.
Stem Cells Int ; 2018: 4392017, 2018.
Article in English | MEDLINE | ID: mdl-30158984

ABSTRACT

Stem cells (SCs) may constitute a perspective alternative to pharmacological treatment in neurodegenerative diseases. Although the safety of SC transplantation has been widely shown, their clinical efficiency in amyotrophic lateral sclerosis (ALS) is still to be proved. It is not only due to a limited number of studies, small treatment groups, and fast but nonlinear disease progression but also due to lack of objective methods able to show subtle clinical changes. Preliminary guidelines for cell therapy have recently been proposed by a group of ALS experts. They combine clinical, neurophysiological, and functional assessment together with monitoring of the cytokine level. Here, we describe a pilot study on transplantation of autologous adipose-derived regenerative cells (ADRC) into the spinal cord of the patients with ALS and monitoring of the results in accordance with the current recommendations. To show early and/or subtle changes within the muscles of interest, a wide range of clinical and functional tests were used and compared in order to choose the most sensitive and optimal set. Additionally, an analysis of transplanted ADRC was provided to develop standards ensuring the derivation and verification of adequate quality of transplanted cells and to correlate ADRC properties with clinical outcome.

10.
Stem Cells Int ; 2016: 2514917, 2016.
Article in English | MEDLINE | ID: mdl-27651796

ABSTRACT

Mesenchymal stem cells (MSC) exhibit enormous heterogeneity which can modify their regenerative properties and therefore influence therapeutic effectiveness as well as safety of these cells transplantation. In addition the high phenotypic plasticity of MSC population makes it enormously sensitive to any changes in environmental properties including fluctuation in oxygen concentration. We have shown here that lowering oxygen level far below air atmosphere has a beneficial impact on various parameters characteristic for umbilical cord Wharton Jelly- (WJ-) MSC and adipose tissue- (AD-) derived MSC cultures. This includes their cellular composition, rate of proliferation, and maintenance of stemness properties together with commitment to cell differentiation toward mesodermal and neural lineages. In addition, the culture genomic stability increased significantly during long-term cell passaging and eventually protected cells against spontaneous transformation. Also by comparing of two routinely used methods of MSCs isolation (mechanical versus enzymatic) we have found substantial divergence arising between cell culture properties increasing along the time of cultivation in vitro. Thus, in this paper we highlight the urgent necessity to develop the more sensitive and selective methods for prediction and control cells fate and functioning during the time of growth in vitro.

11.
Cytotherapy ; 18(4): 497-509, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26971678

ABSTRACT

Substantial inconsistencies in mesenchymal stem (stromal) cell (MSC) therapy reported in early translational and clinical studies may indicate need for selection of the proper cell population for any particular therapeutic purpose. In the present study we have examined stromal stem cells derived either from umbilical cord Wharton's Jelly (WJ-MSC) or bone marrow (BM-MSC) of adult, healthy donors. The cells characterized in accordance with the International Society for Cellular Therapy (ISCT) indications as well as other phenotypic and functional parameters have been compared under strictly controlled culture conditions. WJ-MSC, in comparison with BM-MSC, exhibited a higher proliferation rate, a greater expansion capability being additionally stimulated under low-oxygen atmosphere, enhanced neurotrophic factors gene expression and spontaneous tendency toward a neural lineage differentiation commitment confirmed by protein and gene marker induction. Our data suggest that WJ-MSC may represent an example of immature-type "pre-MSC," where a substantial cellular component is embryonic-like, pluripotent derivatives with the default neural-like differentiation. These cells may contribute in different extents to nearly all classical MSC populations adversely correlated with the age of cell donors. Our data suggest that neuro-epithelial markers, like nestin, stage specific embryonic antigens-4 or α-smooth muscle actin expressions, may serve as useful indicators of MSC culture neuro-regeneration-associated potency.


Subject(s)
Bone Marrow Cells/cytology , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells/cytology , Nerve Regeneration/physiology , Neurogenesis/physiology , Neurons/physiology , Wharton Jelly/cytology , Adult , Bone Marrow Cells/physiology , Cell Differentiation , Cells, Cultured , Female , Humans , Mesenchymal Stem Cells/physiology , Middle Aged , Pregnancy , Umbilical Cord/cytology
SELECTION OF CITATIONS
SEARCH DETAIL
...