Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 86
Filter
1.
Sci Transl Med ; 16(756): eadi9548, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39018368

ABSTRACT

Immune rejection remains the major obstacle to long-term survival of allogeneic lung transplants. The expression of major histocompatibility complex molecules and minor histocompatibility antigens triggers allogeneic immune responses that can lead to allograft rejection. Transplant outcomes therefore depend on long-term immunosuppression, which is associated with severe side effects. To address this problem, we investigated the effect of genetically engineered transplants with permanently down-regulated swine leukocyte antigen (SLA) expression to prevent rejection in a porcine allogeneic lung transplantation (LTx) model. Minipig donor lungs with unmodified SLA expression (control group, n = 7) or with modified SLA expression (treatment group, n = 7) were used to evaluate the effects of SLA knockdown on allograft survival and on the nature and strength of immune responses after terminating an initial 4-week period of immunosuppression after LTx. Genetic engineering to down-regulate SLA expression was achieved during ex vivo lung perfusion by lentiviral transduction of short hairpin RNAs targeting mRNAs encoding ß2-microglobulin and class II transactivator. Whereas all grafts in the control group were rejected within 3 months, five of seven animals in the treatment group maintained graft survival without immunosuppression during the 2-year monitoring period. Compared with controls, SLA-silenced lung recipients had lower donor-specific antibodies and proinflammatory cytokine concentrations in the serum. Together, these data demonstrate a survival benefit of SLA-down-regulated lung transplants in the absence of immunosuppression.


Subject(s)
Gene Knockdown Techniques , Graft Survival , Histocompatibility Antigens Class I , Immunosuppression Therapy , Lung Transplantation , Animals , Swine , Graft Survival/immunology , Histocompatibility Antigens Class I/metabolism , Graft Rejection/immunology , Swine, Miniature , Histocompatibility Antigens Class II/metabolism , Transplantation, Homologous , beta 2-Microglobulin/genetics , beta 2-Microglobulin/metabolism , Lung/metabolism , Nuclear Proteins , Trans-Activators
2.
Front Immunol ; 15: 1404668, 2024.
Article in English | MEDLINE | ID: mdl-38903492

ABSTRACT

Heart transplantation is associated with major hurdles, including the limited number of available organs for transplantation, the risk of rejection due to genetic discrepancies, and the burden of immunosuppression. In this study, we demonstrated the feasibility of permanent genetic engineering of the heart during ex vivo perfusion. Lentiviral vectors encoding for short hairpin RNAs targeting beta2-microglobulin (shß2m) and class II transactivator (shCIITA) were delivered to the graft during two hours of normothermic EVHP. Highly efficient genetic engineering was indicated by stable reporter gene expression in endothelial cells and cardiomyocytes. Remarkably, swine leucocyte antigen (SLA) class I and SLA class II expression levels were decreased by 66% and 76%, respectively, in the vascular endothelium. Evaluation of lactate, troponin T, and LDH levels in the perfusate and histological analysis showed no additional cell injury or tissue damage caused by lentiviral vectors. Moreover, cytokine secretion profiles (IL-6, IL-8, and TNF-α) of non-transduced and lentiviral vector-transduced hearts were comparable. This study demonstrated the ex vivo generation of genetically engineered hearts without compromising tissue integrity. Downregulation of SLA expression may contribute to reduce the immunogenicity of the heart and support graft survival after allogeneic or xenogeneic transplantation.


Subject(s)
Genetic Vectors , Heart Transplantation , Histocompatibility Antigens Class I , Lentivirus , Animals , Lentivirus/genetics , Heart Transplantation/methods , Genetic Vectors/genetics , Swine , Histocompatibility Antigens Class I/genetics , Histocompatibility Antigens Class I/immunology , Histocompatibility Antigens Class I/metabolism , Perfusion/methods , Histocompatibility Antigens Class II/genetics , Histocompatibility Antigens Class II/metabolism , Histocompatibility Antigens Class II/immunology , beta 2-Microglobulin/genetics , Cytokines/metabolism , Genetic Engineering , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/immunology , Humans , RNA, Small Interfering/genetics , Graft Survival/immunology , Graft Survival/genetics , Endothelial Cells/metabolism , Endothelial Cells/immunology , Nuclear Proteins , Trans-Activators
3.
Front Immunol ; 15: 1360022, 2024.
Article in English | MEDLINE | ID: mdl-38469309

ABSTRACT

Worldwide, pigs represent economically important farm animals, also representing a preferred preclinical large animal model for biomedical studies. The need for swine leukocyte antigen (SLA) typing is increasing with the expanded use of pigs in translational research, infection studies, and for veterinary vaccine design. Göttingen Minipigs (GMP) attract increasing attention as valuable model for pharmacological studies and transplantation research. This study represents a first-time assessment of the SLA gene diversity in Göttingen Minipigs in combination with a comparative metadata analysis with commercial pig lines. As Göttingen Minipigs could harbor private as well as potential novel SLA allele combinations, future research projects would benefit from the characterization of their SLA background. In 209 Göttingen Minipigs, SLA class I (SLA-1, SLA-2, SLA-3) and class II (DRB1, DQB1, DQA) genes were characterized by PCR-based low-resolution (Lr) haplotyping. Criteria and nomenclature used for SLA haplotyping were proposed by the ISAG/IUIS-VIC SLA Nomenclature Committee. Haplotypes were assigned based on the comparison with already known breed or farm-specific allele group combinations. In total, 14 SLA class I and five SLA class II haplotypes were identified in the studied cohort, to manifest in 26 SLA class I but only seven SLA class II genotypes. The most common SLA class I haplotypes Lr-24.0 (SLA-1*15XX or Blank-SLA-3*04:04-SLA-2*06:01~02) and Lr-GMP-3.0 (SLA-1*16:02-SLA-3*03:04-SLA-2*17:01) occurred at frequencies of 23.44 and 18.66%, respectively. For SLA class II, the most prevalent haplotypes Lr-0.21 (DRB1*01XX-DQB1*05XX-DQA*04XX) and Lr-0.03 (DRB1*03:02-DQB1*03:01-DQA*01XX) occurred at frequencies of 38.28 and 30.38%. The comparative metadata analysis revealed that Göttingen Minipigs only share six SLA class I and two SLA class II haplotypes with commercial pig lines. More importantly, despite the limited number of SLA class I haplotypes, the high genotype diversity being observed necessitates pre-experimental SLA background assessment of Göttingen Minipigs in regenerative medicine, allo-transplantation, and xenograft research.


Subject(s)
Histocompatibility Antigens Class II , Histocompatibility Antigens Class I , Swine , Humans , Animals , Swine, Miniature/genetics , Histocompatibility Antigens Class II/genetics , Histocompatibility Antigens Class I/genetics , Haplotypes
4.
PLoS One ; 19(2): e0297942, 2024.
Article in English | MEDLINE | ID: mdl-38329986

ABSTRACT

Machine perfusion (MP) is often referred to as one of the most promising advancements in liver transplantation research of the last few decades, with various techniques and modalities being evaluated in preclinical studies using animal models. However, low scientific rigor and subpar reporting standards lead to limited reproducibility and translational potential, hindering progress. This pre-registered systematic review (PROSPERO: CRD42021234667) aimed to provide a thematic overview of the preclinical research landscape on MP in liver transplantation using in vivo transplantation models and to explore methodological and reporting standards, using the ARRIVE (Animal Research: Reporting of In Vivo Experiments) score. In total 56 articles were included. Studies were evenly distributed across Asia, Europe, and the Americas. Porcine models were used in 57.1% of the studies, followed by rats (39.3%) and dogs (3.6%). In terms of graft type, 55.4% of the studies used donation after cardiac death grafts, while donation after brain death grafts accounted for 37.5%. Regarding MP modalities, the distribution was as follows: 41.5% of articles utilized hypothermic MP, 21.5% normothermic MP, 13.8% subnormothermic MP, and 16.9% utilized hypothermic oxygenated MP. The stringent documentation of ARRIVE elements concerning precise experimental execution, group size and selection, the choice of statistical methods, as well as adherence to the principles of the 3Rs, was notably lacking in the majority of publications, with less than 30% providing comprehensive details. Postoperative analgesia and antibiotics treatment were not documented in 82.1% of all included studies. None of the analyzed studies fully adhered to the ARRIVE Guidelines. In conclusion, the present study emphasizes the importance of adhering to reporting standards to promote reproducibility and adequate animal welfare in preclinical studies in machine perfusion. At the same time, it highlights a clear deficiency in this field, underscoring the need for further investigations into animal welfare-related topics.


Subject(s)
Liver Transplantation , Organ Preservation , Swine , Animals , Dogs , Rats , Reproducibility of Results , Organ Preservation/methods , Liver , Perfusion/methods , Liver Transplantation/methods
5.
Front Immunol ; 15: 1279050, 2024.
Article in English | MEDLINE | ID: mdl-38352884

ABSTRACT

Xenotransplantation offers a promising alternative to circumvent the lack of donated human organs available for transplantation. Different attempts to improve the survival of xenografts led to the generation of transgenic pigs expressing various combinations of human protective genes or knocked out for specific antigens. Currently, testing the efficiency of porcine organs carrying different genetic modifications in preventing xenogeneic immune responses completely relies on in vitro assays, humanized mouse models, or non-human primate transplantation models. However, these tests are often associated with major concerns due to reproducibility and generation of insufficient data as well as they raise ethical, logistical, and economic issues. In this study, we investigated the feasibility of specifically assessing the strength of human T-cell responses towards the kidneys of wild-type (WT) or transgenic pigs overexpressing human programmed death-1 ligand 1 (hPD-L1) during ex vivo kidney perfusion (EVKP). Human T cells were shown to adhere to the endothelium and transmigrate into WT and hPD-L1 kidneys. However, transcript levels of TNF-a and IFN-y as well as cytotoxic molecules such as granzyme B and perforin secreted by human T cells were significantly decreased in the tissue of hPD-L1 kidneys in comparison to WT kidneys. These results were confirmed via in vitro assays using renal endothelial cells (ECs) isolated from WT and hPD-L1 transgenic pigs. Both CD4+ and CD8+ T cells showed significantly lower proliferation rates after exposure to hPD-L1 porcine renal ECs in comparison to WT ECs. In addition, the secretion of pro-inflammatory cytokines was significantly reduced in cultures using hPD-L1 ECs in comparison to WT ECs. Remarkably, hPD-L1 EC survival was significantly increased in cytotoxic assays. This study demonstrates the feasibility of evaluating the human response of specific immune subsets such as human T cells towards the whole xenograft during EVKP. This may represent a robust strategy to assess the potency of different genetic modifications to prevent xenogeneic immune responses and thereby predict the risk of immune rejection of new genetically engineered xenografts.


Subject(s)
B7-H1 Antigen , CD8-Positive T-Lymphocytes , Mice , Animals , Swine , Humans , B7-H1 Antigen/genetics , Endothelial Cells , Reproducibility of Results , Animals, Genetically Modified , Lymphocyte Activation , Kidney
6.
Int J Mol Sci ; 24(16)2023 Aug 12.
Article in English | MEDLINE | ID: mdl-37628892

ABSTRACT

Xenotransplantation reemerged as a promising alternative to conventional transplantation enlarging the available organ pool. However, success of xenotransplantation depends on the design and selection of specific genetic modifications and on the development of robust assays allowing for a precise assessment of tissue-specific immune responses. Nevertheless, cell-based assays are often compromised by low proliferative capacity of primary cells. Proximal tubular epithelial cells (PTECs) play a crucial role in kidney function. Here, we generated immortalized PTECs (imPTECs) by overexpression of simian virus 40 T large antigen. ImPTECs not only showed typical morphology and phenotype, but, in contrast to primary PTECs, they maintained steady cell cycling rates and functionality. Furthermore, swine leukocyte antigen (SLA) class I and class II transcript levels were reduced by up to 85% after transduction with lentiviral vectors encoding for short hairpin RNAs targeting ß2-microglobulin and the class II transactivator. This contributed to reducing xenogeneic T-cell cytotoxicity (p < 0.01) and decreasing secretion of pro-inflammatory cytokines such as IL-6 and IFN-γ. This study showed the feasibility of generating highly proliferative PTECs and the development of tissue-specific immunomonitoring assays. Silencing SLA expression on PTECs was demonstrated to be an effective strategy to prevent xenogeneic cellular immune responses and may strongly support graft survival after xenotransplantation.


Subject(s)
Biological Assay , Epithelial Cells , Animals , Swine , Down-Regulation , Immunity
7.
Front Immunol ; 14: 1086433, 2023.
Article in English | MEDLINE | ID: mdl-37033919

ABSTRACT

Introduction: The ubiquitous Epstein-Barr virus (EBV) is an oncogenic herpes virus associated with several human malignancies. EBV is an immune-evasive pathogen that promotes CD8+ T cell exhaustion and dysregulates CD4+ T cell functions. Burkitt lymphoma (BL) is frequently associated with EBV infections. Since BL relapses after conventional therapies are difficult to treat, we evaluated prospective off-the-shelf edited CAR-T cell therapies targeting CD19 or the EBV gp350 cell surface antigen. Methods: We used CRISPR/Cas9 gene editing methods to knock in (KI) the CD19CAR.CD28z or gp350CAR.CD28z into the T cell receptor (TCR) alpha chain (TRAC) locus. Results: Applying upscaled methods with the ExPERT ATx® MaxCyte system, KI efficacy was ~20% of the total ~2 × 108 TCR-knocked-out (KO) generated cells. KOTCRKICAR-T cells were co-cultured in vitro with the gp350+CD19+ BL cell lines Daudi (infected with type 1 EBV) or with Jiyoye (harboring a lytic type 2 EBV). Both types of CAR-T cells showed cytotoxic effects against the BL lines in vitro. CD8+ KICAR-T cells showed higher persistency than CD4+ KICAR-T cells after in vitro co-culture with BL and upregulation of the activation/exhaustion markers PD-1, LAG-3, and TIM-3. Two preclinical in vivo xenograft models were set up with Nod.Rag.Gamma mice injected intravenously (i.v.) with 2 × 105 Daudi/fLuc-GFP or with Jiyoye/fLuc-GFP cells. Compared with the non-treated controls, mice challenged with BL and treated with CD19KICAR-T cells showed delayed lymphoma dissemination with lower EBV DNA load. Notably, for the Jiyoye/fLuc-GFP model, almost exclusively CD4+ CD19KICAR-T cells were detectable at the endpoint analyses in the bone marrow, with increased frequencies of regulatory T cells (Tregs) and TIM-3+CD4+ T cells. Administration of gp350KICAR-T cells to mice after Jiyoye/GFP-fLuc challenge did not inhibit BL growth in vivo but reduced the EBV DNA load in the bone marrow and promoted gp350 antigen escape. CD8+PD-1+LAG-3+ gp350KICAR-T cells were predominant in the bone marrow. Discussion: The two types of KOTCRKICAR-T cells showed different therapeutic effects and in vivo dynamics. These findings reflect the complexities of the immune escape mechanisms of EBV, which may interfere with the CAR-T cell property and potency and should be taken into account for future clinical translation.


Subject(s)
Burkitt Lymphoma , Epstein-Barr Virus Infections , Receptors, Chimeric Antigen , Humans , Mice , Animals , Burkitt Lymphoma/therapy , Herpesvirus 4, Human , Hepatitis A Virus Cellular Receptor 2 , Programmed Cell Death 1 Receptor , Prospective Studies , Receptors, Antigen, T-Cell, alpha-beta
8.
Front Transplant ; 2: 1183908, 2023.
Article in English | MEDLINE | ID: mdl-38993849

ABSTRACT

Normothermic ex-vivo machine perfusion provides a powerful tool to improve donor kidney preservation and a route for the delivery of pharmacological or gene therapeutic interventions prior to transplantation. However, perfusion at normothermic temperatures requires adequate tissue oxygenation to meet the physiological metabolic demand. For this purpose, the addition of appropriate oxygen carriers (OCs) to the perfusion solution is essential to ensure a sufficient oxygen supply and reduce the risk for tissue injury due to hypoxia. It is crucial that the selected OCs preserve the integrity and low immunogenicity of the graft. In this study, the effect of two OCs on the organ's integrity and immunogenicity was evaluated. Porcine kidneys were perfused ex-vivo for four hours using perfusion solutions supplemented with red blood cells (RBCs) as conventional OC, perfluorocarbon (PFC)-based OC, or Hemarina-M101 (M101), a lugworm hemoglobin-based OC named HEMO2life®, recently approved in Europe (i.e., CE obtained in October 2022). Perfusions with all OCs led to decreased lactate levels. Additionally, none of the OCs negatively affected renal morphology as determined by histological analyses. Remarkably, all OCs improved the perfusion solution by reducing the expression of pro-inflammatory mediators (IL-6, IL-8, TNFα) and adhesion molecules (ICAM-1) on both transcript and protein level, suggesting a beneficial effect of the OCs in maintaining the low immunogenicity of the graft. Thus, PFC-based OCs and M101 may constitute a promising alternative to RBCs during normothermic ex-vivo kidney perfusion.

10.
Hum Gene Ther ; 33(7-8): 460-471, 2022 04.
Article in English | MEDLINE | ID: mdl-34779223

ABSTRACT

Genetic engineering is a promising tool to repair genetic disorders, improve graft function, or reduce immune responses toward allografts. Ex vivo organ perfusion systems have the potential to mitigate ischemic-reperfusion injury, prolong preservation time, or even rescue organ function. We aim at combining both technologies to develop a modular platform allowing the genetic modification of vascularized composite (VC) allografts. Rat hind limbs were perfused ex vivo under subnormothermic conditions with lentiviral vectors. Specific perfusion conditions such as controlled pressure, temperature, and flow rates were optimized to support the genetic modification of the limbs. Genetic modification was detected in vascular, muscular, and dermal limb tissues. Remarkably, skin follicular and interfollicular keratinocytes, as well as endothelial cells showed stable transgene expression. Furthermore, levels of injury markers such as lactate, myoglobin, and lactate dehydrogenase, as well as histological analyses showed that ex vivo limb perfusion with lentiviral vectors did not cause tissue damage and limb cytokine secretion signatures were not significantly affected. The use of ex vivo VC perfusion in combination with lentiviral vectors allows an efficient and stable genetic modification representing a robust platform to genetically engineer limbs toward increasing graft survival after transplantation.


Subject(s)
Endothelial Cells , Graft Survival , Animals , Extremities , Perfusion , Rats , Temperature
11.
Front Immunol ; 12: 747357, 2021.
Article in English | MEDLINE | ID: mdl-34956181

ABSTRACT

Limbal stem cell (LSC) transplantation is the only efficient treatment for patients affected by LSC deficiency (LSCD). Allogeneic LSC transplantation is one of the most successful alternative for patients with bilateral LSCD. Nevertheless, the high variability of the human leukocyte antigens (HLA) remains a relevant obstacle to long-term allogeneic graft survival. This study characterized the immunologic properties of LSCs and proposed a genetic engineering strategy to reduce the immunogenicity of LSCs and of their derivatives. Hence, LSC HLA expression was silenced using lentiviral vectors encoding for short hairpin (sh) RNAs targeting ß2-microglobulin (ß2M) or class II major histocompatibility complex transactivator (CIITA) to silence HLA class I and II respectively. Beside the constitutive expression of HLA class I, LSCs showed the capability to upregulate HLA class II expression under inflammatory conditions. Furthermore, LSCs demonstrated the capability to induce T-cell mediated immune responses. LSCs phenotypical and functional characteristics are not disturbed after genetic modification. However, HLA silenced LSC showed to prevent T cell activation, proliferation and cytotoxicity in comparison to fully HLA-expressing LSCs. Additionally; HLA-silenced LSCs were protected against antibody-mediated cellular-dependent cytotoxicity. Our data is a proof-of-concept of the feasibility to generate low immunogenic human LSCs without affecting their typical features. The use of low immunogenic LSCs may support for long-term survival of LSCs and their derivatives after allogeneic transplantation.


Subject(s)
HLA Antigens/immunology , Hematopoietic Stem Cell Transplantation , Limbus Corneae/immunology , Stem Cells/immunology , Cells, Cultured , HLA Antigens/genetics , Humans , Limbus Corneae/cytology , Transplantation, Homologous
12.
Front Immunol ; 12: 768458, 2021.
Article in English | MEDLINE | ID: mdl-34777386

ABSTRACT

Patelet transfusion refractoriness remains a relevant hurdle in the treatment of severe alloimmunized thrombocytopenic patients. Antibodies specific for the human leukocyte antigens (HLA) class I are considered the major immunological cause for PLT transfusion refractoriness. Due to the insufficient availability of HLA-matched PLTs, the development of new technologies is highly desirable to provide an adequate management of thrombocytopenia in immunized patients. Blood pharming is a promising strategy not only to generate an alternative to donor blood products, but it may offer the possibility to optimize the therapeutic effect of the produced blood cells by genetic modification. Recently, enormous technical advances in the field of in vitro production of megakaryocytes (MKs) and PLTs have been achieved by combining progresses made at different levels including identification of suitable cell sources, cell pharming technologies, bioreactors and application of genetic engineering tools. In particular, use of RNA interference, TALEN and CRISPR/Cas9 nucleases or nickases has allowed for the generation of HLA universal PLTs with the potential to survive under refractoriness conditions. Genetically engineered HLA-silenced MKs and PLTs were shown to be functional and to have the capability to survive cell- and antibody-mediated cytotoxicity using in vitro and in vivo models. This review is focused on the methods to generate in vitro genetically engineered MKs and PLTs with the capacity to evade allogeneic immune responses.


Subject(s)
Blood Platelets/immunology , Genetic Engineering/methods , Histocompatibility Antigens Class I/immunology , Megakaryocytes/immunology , Gene Editing , Genetic Therapy , Humans , Platelet Transfusion/adverse effects
13.
Mol Ther Methods Clin Dev ; 21: 621-641, 2021 Jun 11.
Article in English | MEDLINE | ID: mdl-34095345

ABSTRACT

Acute myeloid leukemia (AML) patients with minimal residual disease and receiving allogeneic hematopoietic stem cell transplantation (HCT) have poor survival. Adoptive administration of dendritic cells (DCs) presenting the Wilms tumor protein 1 (WT1) leukemia-associated antigen can potentially stimulate de novo T and B cell development to harness the graft-versus-leukemia (GvL) effect after HCT. We established a simple and fast genetic modification of monocytes for simultaneous lentiviral expression of a truncated WT1 antigen (tWT1), granulocyte macrophage-colony-stimulating factor (GM-CSF), and interferon (IFN)-α, promoting their self-differentiation into potent "induced DCs" (iDCtWT1). A tricistronic integrase-defective lentiviral vector produced under good manufacturing practice (GMP)-like conditions was validated. Transduction of CD14+ monocytes isolated from peripheral blood, cord blood, and leukapheresis material effectively induced their self-differentiation. CD34+ cell-transplanted Nod.Rag.Gamma (NRG)- and Nod.Scid.Gamma (NSG) mice expressing human leukocyte antigen (HLA)-A∗0201 (NSG-A2)-immunodeficient mice were immunized with autologous iDCtWT1. Both humanized mouse models showed improved development and maturation of human T and B cells in the absence of adverse effects. Toward clinical use, manufacturing of iDCtWT1 was up scaled and streamlined using the automated CliniMACS Prodigy system. Proof-of-concept clinical-scale runs were feasible, and the 38-h process enabled standardized production and high recovery of a cryopreserved cell product with the expected identity characteristics. These results advocate for clinical trials testing iDCtWT1 to boost GvL and eradicate leukemia.

15.
Int J Immunogenet ; 48(2): 120-134, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33410582

ABSTRACT

Xenotransplantation may become the highly desired solution to close the gap between the availability of donated organs and number of patients on the waiting list. In recent years, enormous progress has been made in the development of genetically engineered donor pigs. The introduced genetic modifications showed to be efficient in prolonging xenograft survival. In this review, we focus on the type of immune responses that may target xeno-organs after transplantation and promising immunogenetic modifications that show a beneficial effect in ameliorating or eliminating harmful xenogeneic immune responses. Increasing histocompatibility of xenografts by eliminating genetic discrepancies between species will pave their way into clinical application.


Subject(s)
Swine/immunology , Transplantation Immunology , Transplantation, Heterologous , Adaptive Immunity , Animals , Blood Coagulation , Complement Activation , Gene Editing , Gene Knockout Techniques , Genetic Engineering , Graft Rejection/prevention & control , HLA Antigens/immunology , Histocompatibility Antigens Class I/immunology , Humans , Immunity, Humoral , Immunity, Innate , Species Specificity , Swine/genetics
16.
J Biomed Mater Res B Appl Biomater ; 109(8): 1198-1215, 2021 08.
Article in English | MEDLINE | ID: mdl-33319484

ABSTRACT

Human amniotic membrane (hAM) has been employed as scaffolding material in a wide range of tissue engineering applications, especially as a skin dressing and as a graft for corneal treatment, due to the structure of the extracellular matrix and excellent biological properties that enhance both wound healing and tissue regeneration. This review highlights recent work and current knowledge on the application of native hAM, and/or production of hAM-based tissue-engineered products to create scaffolds mimicking the structure of the native membrane to enhance the hAM performance. Moreover, an overview is presented on the available (cryo) preservation techniques for storage of native hAM and tissue-engineered products that are necessary to maintain biological functions such as angiogenesis, anti-inflammation, antifibrotic and antibacterial activity.


Subject(s)
Amnion/chemistry , Bandages , Biocompatible Materials , Cryopreservation , Tissue Engineering , Tissue Scaffolds/chemistry , Wound Healing , Biocompatible Materials/chemistry , Biocompatible Materials/therapeutic use , Extracellular Matrix/chemistry , Humans
17.
Methods Mol Biol ; 2180: 539-554, 2021.
Article in English | MEDLINE | ID: mdl-32797433

ABSTRACT

Current research in the field of transfusion medicine is focused on developing innovative approaches to generate populations of functional megakaryocytes (MKs) ex vivo. This may open perspectives to establish alternative therapies for donor platelet transfusion in the management of thrombocytopenic patients and pave the way for novel regenerative approaches. Efficient cryopreservation techniques can provide the opportunity for long-term storage and accumulation of necessary amounts of MKs in a ready-to-use manner. However, in this case, besides the viability, it is crucial to consider the recovery of functional MK properties after the impact of freezing. In this chapter, the possibility to cryopreserve iPSC-derived MKs is described. In particular, the methods for a comprehensive analysis of phenotypic and functional features of MKs after cryopreservation are proposed. The use of cryopreserved in vitro-produced MKs may benefit to the field of transfusion medicine to overcome the lack of sufficient blood donors.


Subject(s)
Blood Platelets/cytology , Cell Culture Techniques/methods , Cell Separation/methods , Cryopreservation/methods , Cryoprotective Agents/pharmacology , Induced Pluripotent Stem Cells/cytology , Megakaryocytes/cytology , Animals , Blood Platelets/drug effects , Cell Differentiation , Humans , Induced Pluripotent Stem Cells/drug effects , Megakaryocytes/drug effects
18.
Int J Mol Sci ; 21(20)2020 Oct 16.
Article in English | MEDLINE | ID: mdl-33081128

ABSTRACT

Donor platelet transfusion is currently the only efficient treatment of life-threatening thrombocytopenia, but it is highly challenged by immunological, quality, and contamination issues, as well as short shelf life of the donor material. Ex vivo produced megakaryocytes and platelets represent a promising alternative strategy to the conventional platelet transfusion. However, practical implementation of such strategy demands availability of reliable biobanking techniques, which would permit eliminating continuous cell culture maintenance, ensure time for quality testing, enable stock management and logistics, as well as availability in a ready-to-use manner. At the same time, protocols applying DMSO-based cryopreservation media were associated with increased risks of adverse long-term side effects after patient use. Here, we show the possibility to develop cryopreservation techniques for iPSC-derived megakaryocytes under defined xeno-free conditions with significant reduction or complete elimination of DMSO. Comprehensive phenotypic and functional in vitro characterization of megakaryocytes has been performed before and after cryopreservation. Megakaryocytes cryopreserved DMSO-free, or using low DMSO concentrations, showed the capability to produce platelets in vivo after transfusion in a mouse model. These findings propose biobanking approaches essential for development of megakaryocyte-based replacement and regenerative therapies.


Subject(s)
Blood Preservation/methods , Cryopreservation , Cryoprotective Agents/toxicity , Dimethyl Sulfoxide/toxicity , Megakaryocytes/drug effects , Animals , Blood Platelets/cytology , Blood Platelets/drug effects , Cells, Cultured , Humans , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/drug effects , Megakaryocytes/cytology , Mice , Mice, SCID
19.
Mol Ther Oncolytics ; 18: 504-524, 2020 Sep 25.
Article in English | MEDLINE | ID: mdl-32953984

ABSTRACT

Epstein-Barr virus (EBV) is a latent and oncogenic human herpesvirus. Lytic viral protein expression plays an important role in EBV-associated malignancies. The EBV envelope glycoprotein 350 (gp350) is expressed abundantly during EBV lytic reactivation and sporadically on the surface of latently infected cells. Here we tested T cells expressing gp350-specific chimeric antigen receptors (CARs) containing scFvs derived from two novel gp350-binding, highly neutralizing monoclonal antibodies. The scFvs were fused to CD28/CD3ζ signaling domains in a retroviral vector. The produced gp350CAR-T cells specifically recognized and killed gp350+ 293T cells in vitro. The best-performing 7A1-gp350CAR-T cells were cytotoxic against the EBV+ B95-8 cell line, showing selectivity against gp350+ cells. Fully humanized Nod.Rag.Gamma mice transplanted with cord blood CD34+ cells and infected with the EBV/M81/fLuc lytic strain were monitored dynamically for viral spread. Infected mice recapitulated EBV-induced lymphoproliferation, tumor development, and systemic inflammation. We tested adoptive transfer of autologous CD8+gp350CAR-T cells administered protectively or therapeutically. After gp350CAR-T cell therapy, 75% of mice controlled or reduced EBV spread and showed lower frequencies of EBER+ B cell malignant lymphoproliferation, lack of tumor development, and reduced inflammation. In summary, CD8+gp350CAR-T cells showed proof-of-concept preclinical efficacy against impending EBV+ lymphoproliferation and lymphomagenesis.

20.
PLoS Pathog ; 16(7): e1008560, 2020 07.
Article in English | MEDLINE | ID: mdl-32667948

ABSTRACT

Human cytomegalovirus (HCMV) causes serious complications to immune compromised hosts. Dendritic cells (iDCgB) expressing granulocyte-macrophage colony-stimulating factor, interferon-alpha and HCMV-gB were developed to promote de novo antiviral adaptive responses. Mice reconstituted with a human immune system (HIS) were immunized with iDCgB and challenged with HCMV, resulting into 93% protection. Immunization stimulated the expansion of functional effector memory CD8+ and CD4+ T cells recognizing gB. Machine learning analyses confirmed bone marrow T/CD4+, liver B/IgA+ and spleen B/IgG+ cells as predictive biomarkers of immunization (≈87% accuracy). CD8+ and CD4+ T cell responses against gB were validated. Splenic gB-binding IgM-/IgG+ B cells were sorted and analyzed at a single cell level. iDCgB immunizations elicited human-like IgG responses with a broad usage of various IgG heavy chain V gene segments harboring variable levels of somatic hypermutation. From this search, two gB-binding human monoclonal IgGs were generated that neutralized HCMV infection in vitro. Passive immunization with these antibodies provided proof-of-concept evidence of protection against HCMV infection. This HIS/HCMV in vivo model system supported the validation of novel active and passive immune therapies for future clinical translation.


Subject(s)
Antibodies, Viral/immunology , Cytomegalovirus Infections/immunology , Cytomegalovirus Vaccines/immunology , Immunization, Passive , Immunoglobulin G/immunology , Animals , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/pharmacology , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/pharmacology , Antigens, Viral/immunology , Cytomegalovirus/immunology , Dendritic Cells/immunology , Disease Models, Animal , Humans , Immunoglobulin G/pharmacology , Mice
SELECTION OF CITATIONS
SEARCH DETAIL
...