Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 11(1): 2289, 2020 05 08.
Article in English | MEDLINE | ID: mdl-32385263

ABSTRACT

The osteoblast differentiation capacity of skeletal stem cells (SSCs) must be tightly regulated, as inadequate bone formation results in low bone mass and skeletal fragility, and over-exuberant osteogenesis results in heterotopic ossification (HO) of soft tissues. RUNX2 is essential for tuning this balance, but the mechanisms of posttranslational control of RUNX2 remain to be fully elucidated. Here, we identify that a CK2/HAUSP pathway is a key regulator of RUNX2 stability, as Casein kinase 2 (CK2) phosphorylates RUNX2, recruiting the deubiquitinase herpesvirus-associated ubiquitin-specific protease (HAUSP), which stabilizes RUNX2 by diverting it away from ubiquitin-dependent proteasomal degradation. This pathway is important for both the commitment of SSCs to osteoprogenitors and their subsequent maturation. This CK2/HAUSP/RUNX2 pathway is also necessary for HO, as its inhibition blocked HO in multiple models. Collectively, active deubiquitination of RUNX2 is required for bone formation and this CK2/HAUSP deubiquitination pathway offers therapeutic opportunities for disorders of inappropriate mineralization.


Subject(s)
Core Binding Factor Alpha 1 Subunit/metabolism , Ossification, Heterotopic/metabolism , Osteogenesis , Adult , Aged , Animals , Casein Kinase II/genetics , Casein Kinase II/metabolism , Cell Differentiation , Cleidocranial Dysplasia/genetics , Cleidocranial Dysplasia/pathology , Female , Gene Deletion , Haploinsufficiency/genetics , Hindlimb/metabolism , Humans , Male , Mice, Inbred C57BL , Middle Aged , Ossification, Heterotopic/genetics , Ossification, Heterotopic/pathology , Osteoblasts/metabolism , Phosphorylation , Protein Stability , RNA, Messenger/genetics , RNA, Messenger/metabolism , Ubiquitin-Specific Peptidase 7/metabolism
2.
Cell Prolif ; 53(1): e12726, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31755150

ABSTRACT

OBJECTIVES: In humans, non-obstructive azoospermia (NOA) is a major cause of male infertility. However, the aetiology of NOA is largely unknown. Previous studies reported that protein CK2ß was abundantly and broadly expressed in spermatogenic cells. Here, we investigate whether protein CK2ß participates in spermatogenesis. MATERIALS AND METHODS: In this study, we separated spermatogenic cells using STA-PUT velocity sedimentation, analysed the expression pattern of protein CK2ß by immunoblotting, specifically deleted Ck2ß gene in early-stage spermatogenic cells by crossing Ck2ßfl mice with Stra8-Cre+ mice and validated the knockout efficiency by quantitative RT-PCR and immunoblotting. The phenotypes of Ck2ßfl/Δ ;SCre+ mice were studied by immunohistochemistry and immunofluorescence. The molecular mechanisms of male germ cell development arrest were elucidated by immunoblotting and TUNEL assay. RESULTS: Ablation of Ck2ß gene triggered excessive germ cell apoptosis, germ cell development arrest, azoospermia and male infertility. Inactivation of Ck2ß gene caused distinctly reduced expression of Ck2α' gene and CK2α' protein. CONCLUSIONS: Ck2ß is a vital gene for germ cell survival and male fertility in mice.


Subject(s)
Apoptosis/genetics , Azoospermia , Casein Kinase II/deficiency , Germ Cells , Animals , Azoospermia/enzymology , Azoospermia/genetics , Azoospermia/pathology , Casein Kinase II/metabolism , Gene Deletion , Germ Cells/enzymology , Germ Cells/pathology , Male , Mice , Mice, Knockout
3.
Nat Immunol ; 16(3): 267-75, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25599562

ABSTRACT

The quality of the adaptive immune response depends on the differentiation of distinct CD4(+) helper T cell subsets, and the magnitude of an immune response is controlled by CD4(+)Foxp3(+) regulatory T cells (Treg cells). However, how a tissue- and cell type-specific suppressor program of Treg cells is mechanistically orchestrated has remained largely unexplored. Through the use of Treg cell-specific gene targeting, we found that the suppression of allergic immune responses in the lungs mediated by T helper type 2 (TH2) cells was dependent on the activity of the protein kinase CK2. Genetic ablation of the ß-subunit of CK2 specifically in Treg cells resulted in the proliferation of a hitherto-unexplored ILT3(+) Treg cell subpopulation that was unable to control the maturation of IRF4(+)PD-L2(+) dendritic cells required for the development of TH2 responses in vivo.


Subject(s)
Casein Kinase II/immunology , T-Lymphocytes, Regulatory/immunology , Th2 Cells/immunology , Animals , CD4-Positive T-Lymphocytes/enzymology , CD4-Positive T-Lymphocytes/immunology , Cell Differentiation/immunology , Cell Growth Processes/immunology , Cell Line , Dendritic Cells/enzymology , Dendritic Cells/immunology , Forkhead Transcription Factors/immunology , Humans , Hypersensitivity/blood , Hypersensitivity/immunology , Interferon Regulatory Factors/immunology , Leukocytes, Mononuclear/immunology , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Transgenic , Receptors, Cell Surface/immunology , T-Lymphocytes, Regulatory/enzymology , Th2 Cells/enzymology
SELECTION OF CITATIONS
SEARCH DETAIL
...