Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Biochem Biophys Res Commun ; 440(2): 342-7, 2013 Oct 18.
Article in English | MEDLINE | ID: mdl-24070605

ABSTRACT

The phosphoinositide 5-kinase PIKfyve and 5-phosphatase Sac3 are scaffolded by ArPIKfyve in the PIKfyve-ArPIKfyve-Sac3 (PAS) regulatory complex to trigger a unique loop of PtdIns3P-PtdIns(3,5)P2 synthesis and turnover. Whereas the metabolizing enzymes of the other 3-phosphoinositides have already been implicated in breast cancer, the role of the PAS proteins and the PtdIns3P-PtdIns(3,5)P2 conversion is unknown. To begin elucidating their roles, in this study we monitored the endogenous levels of the PAS complex proteins in cell lines derived from hormone-receptor positive (MCF7 and T47D) or triple-negative breast cancers (TNBC) (BT20, BT549 and MDA-MB-231) as well as in MCF10A cells derived from non-tumorigenic mastectomy. We report profound upregulation of Sac3 and ArPIKfyve in the triple negative vs. hormone-sensitive breast cancer or non-tumorigenic cells, with BT cell lines showing the highest levels. siRNA-mediated knockdown of Sac3, but not that of PIKfyve, significantly inhibited proliferation of BT20 and BT549 cells. In these cells, knockdown of ArPIKfyve had only a minor effect, consistent with a primary role for Sac3 in TNBC cell proliferation. Intriguingly, steady-state levels of PtdIns(3,5)P2 in BT20 and T47D cells were similar despite the 6-fold difference in Sac3 levels between these cell lines. However, steady-state levels of PtdIns3P and PtdIns5P, both regulated by the PAS complex, were significantly reduced in BT20 vs. T47D or MCF10A cell lines, consistent with elevated Sac3 affecting directly or indirectly the homeostasis of these lipids in TNBC. Together, our results uncover an unexpected role for Sac3 phosphatase in TNBC cell proliferation. Database analyses, discussed herein, reinforce the involvement of Sac3 in breast cancer pathogenesis.


Subject(s)
Flavoproteins/physiology , Membrane Proteins/physiology , Phosphatidylinositol 3-Kinases/physiology , Phosphatidylinositol Phosphates/metabolism , Triple Negative Breast Neoplasms/physiopathology , Female , Humans , Intracellular Signaling Peptides and Proteins , Phosphoric Monoester Hydrolases , Triple Negative Breast Neoplasms/genetics
2.
Am J Physiol Cell Physiol ; 303(4): C436-46, 2012 Aug 15.
Article in English | MEDLINE | ID: mdl-22621786

ABSTRACT

PIKfyve is an essential mammalian lipid kinase with pleiotropic cellular functions whose genetic knockout in mice leads to preimplantation lethality. Despite several reports for PIKfyve-catalyzed synthesis of phosphatidylinositol 5-phosphate (PtdIns5P) along with phosphatidylinositol-3,5-biphosphate [PtdIns(3,5)P(2)] in vitro and in vivo, the role of the PIKfyve pathway in intracellular PtdIns5P production remains underappreciated and the function of the PIKfyve-synthesized PtdIns5P pool poorly characterized. Hence, the recently discovered potent PIKfyve-selective inhibitor, the YM201636 compound, has been solely tested for inhibiting PtdIns(3,5)P(2) synthesis. Here, we have compared the in vitro and in vivo inhibitory potency of YM201636 toward PtdIns5P and PtdIns(3,5)P(2). Unexpectedly, we observed that at low doses (10-25 nM), YM201636 inhibited preferentially PtdIns5P rather than PtdIns(3,5)P(2) production in vitro, whereas at higher doses, the two products were similarly inhibited. In cellular contexts, YM201636 at 160 nM inhibited PtdIns5P synthesis twice more effectively compared with PtdIns(3,5)P(2) synthesis. In 3T3L1 adipocytes, human embryonic kidney 293 and Chinese hamster ovary (CHO-T) cells, levels of PtdIns5P dropped by 62-71% of the corresponding untreated controls, whereas those of PtdIns(3,5)P(2) fell by only 28-46%. The preferential inhibition of PtdIns5P versus PtdIns(3,5)P(2) at low doses of YM201636 was explored to probe contributions of the PIKfyve-catalyzed PtdIns5P pool to insulin-induced actin stress fiber disassembly in CHO-T cells, GLUT4 translocation in 3T3L1 adipocytes, and induction of aberrant cellular vacuolation in these or other cell types. The results provide the first experimental evidence that the principal pathway for PtdIns5P intracellular production is through PIKfyve and that insulin effect on actin stress fiber disassembly is mediated entirely by the PIKfyve-produced PtdIns5P pool.


Subject(s)
Aminopyridines/pharmacology , Heterocyclic Compounds, 3-Ring/pharmacology , Phosphatidylinositol 3-Kinases/metabolism , Phosphatidylinositol Phosphates/biosynthesis , 3T3-L1 Cells , Animals , CHO Cells , Cricetinae , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , HEK293 Cells , Humans , Insulin , Mice , Phosphatidylinositol 3-Kinases/genetics , Phosphoinositide-3 Kinase Inhibitors , Phosphoproteins/genetics , Phosphoproteins/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL