Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Front Genet ; 15: 1361418, 2024.
Article in English | MEDLINE | ID: mdl-38606359

ABSTRACT

Eucalyptus dunnii is one of the most important Eucalyptus species for short-fiber pulp production in regions where other species of the genus are affected by poor soil and climatic conditions. In this context, E. dunnii holds promise as a resource to address and adapt to the challenges of climate change. Despite its rapid growth and favorable wood properties for solid wood products, the advancement of its improvement remains in its early stages. In this work, we evaluated the performance of two single nucleotide polymorphism, (SNP), genotyping methods for population genetics analysis and Genomic Selection in E. dunnii. Double digest restriction-site associated DNA sequencing (ddRADseq) was compared with the EUChip60K array in 308 individuals from a provenance-progeny trial. The compared SNP set included 8,011 and 19,008 informative SNPs distributed along the 11 chromosomes, respectively. Although the two datasets differed in the percentage of missing data, genome coverage, minor allele frequency and estimated genetic diversity parameters, they revealed a similar genetic structure, showing two subpopulations with little differentiation between them, and low linkage disequilibrium. GS analyses were performed for eleven traits using Genomic Best Linear Unbiased Prediction (GBLUP) and a conventional pedigree-based model (ABLUP). Regardless of the SNP dataset, the predictive ability (PA) of GBLUP was better than that of ABLUP for six traits (Cellulose content, Total and Ethanolic extractives, Total and Klason lignin content and Syringyl and Guaiacyl lignin monomer ratio). When contrasting the SNP datasets used to estimate PAs, the GBLUP-EUChip60K model gave higher and significant PA values for six traits, meanwhile, the values estimated using ddRADseq gave higher values for three other traits. The PAs correlated positively with narrow sense heritabilities, with the highest correlations shown by the ABLUP and GBLUP-EUChip60K. The two genotyping methods, ddRADseq and EUChip60K, are generally comparable for population genetics and genomic prediction, demonstrating the utility of the former when subjected to rigorous SNP filtering. The results of this study provide a basis for future whole-genome studies using ddRADseq in non-model forest species for which SNP arrays have not yet been developed.

3.
Methods Mol Biol ; 2638: 37-57, 2023.
Article in English | MEDLINE | ID: mdl-36781634

ABSTRACT

Double digest restriction-site associated DNA sequencing (ddRADseq) technology combines genome reduced representation by digestion with two restriction enzymes and next generation sequencing (NGS) to obtain thousands of markers (SNP, SSR, and InDels) and genotype tens to hundreds of samples simultaneously. In this chapter, we describe a 96-plex derived ddRADseq protocol that can be set up to obtain different depth of coverage per locus and can be exploited to model and non-model plant species.


Subject(s)
Genome , High-Throughput Nucleotide Sequencing , Sequence Analysis, DNA/methods , Genotype , Base Sequence , High-Throughput Nucleotide Sequencing/methods , Technology , Polymorphism, Single Nucleotide
4.
Plant Mol Biol ; 111(1-2): 205-219, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36367622

ABSTRACT

KEY MESSAGE: The article presents an optimization of the key parameters for the identification of SNPs in sugarcane using a GBS protocol based on two Illumina NextSeq and NovaSeq platforms. Sugarcane (Saccharum sp.), a world-wide known feedstock for sugar production, bioethanol, and energy, has an extremely complex genome, being highly polyploid and aneuploid. A double-digestion restriction site-associated DNA sequencing protocol (ddRADseq) was tested in four commercial sugarcane hybrids and one high-fibre biotype for the detection of single nucleotide polymorphisms (SNPs). In this work we tested two Illumina sequencing platforms, read size (70 vs. 150 bp), different sequencing coverage per individual (medium and high coverage), and single-reads versus paired-end reads. We also explored different variant calling strategies (with and without reference genome) and filtering schemes [combining two minor allele frequencies (MAFs) with three depth of coverage thresholds]. For the discovery of a large number of novel SNPs in sugarcane, we recommend longer size and paired-end reads, medium sequencing coverage per individual and Illumina platform NovaSeq6000 for a cost-effective approach, and filter parameters of lower MAF and higher depth coverages thresholds. Although the de novo analysis retrieved more SNPs, the reference-based method allows downstream characterization of variants. For the two best performing matrices, the number of SNPs per chromosome correlated positively with chromosome length, demonstrating the presence of variants throughout the genome. Multivariate comparisons, with both matrices, showed closer relationships among commercial hybrids than with the high-fibre biotype. Functional analysis of the SNPs demonstrated that more than half of them landed within regulatory regions, whereas the other half affected coding, intergenic and intronic regions. Allelic distances values were lower than 0.07 when analysing two replicated genotypes, confirming the protocol robustness.


Subject(s)
Saccharum , Saccharum/genetics , Sequence Analysis, DNA , Polymorphism, Single Nucleotide/genetics , Genotype , Base Sequence
5.
Genes (Basel) ; 13(12)2022 12 14.
Article in English | MEDLINE | ID: mdl-36553624

ABSTRACT

Diseases caused by necrotrophic fungi, such as the cosmopolitan Sclerotinia sclerotiorum and the Diaporthe/Phomopsis complex, are among the most destructive diseases of sunflower worldwide. The lack of complete resistance combined with the inefficiency of chemical control makes assisted breeding the best strategy for disease control. In this work, we present an integrated genome-wide association (GWA) study investigating the response of a diverse panel of sunflower inbred lines to both pathogens. Phenotypic data for Sclerotinia head rot (SHR) consisted of five disease descriptors (disease incidence, DI; disease severity, DS; area under the disease progress curve for DI, AUDPCI, and DS, AUDPCS; and incubation period, IP). Two disease descriptors (DI and DS) were evaluated for two manifestations of Diaporthe/Phomopsis: Phomopsis stem canker (PSC) and Phomopsis head rot (PHR). In addition, a principal component (PC) analysis was used to derive transformed phenotypes as inputs to a univariate GWA (PC-GWA). Genotypic data comprised a panel of 4269 single nucleotide polymorphisms (SNP), generated via genotyping-by-sequencing. The GWA analysis revealed 24 unique marker-trait associations for SHR, 19 unique marker-trait associations for Diaporthe/Phomopsis diseases, and 7 markers associated with PC1 and PC2. No common markers were found for the response to the two pathogens. Nevertheless, epistatic interactions were identified between markers significantly associated with the response to S. sclerotiorum and Diaporthe/Phomopsis. This suggests that, while the main determinants of resistance may differ for the two pathogens, there could be an underlying common genetic basis. The exploration of regions physically close to the associated markers yielded 364 genes, of which 19 were predicted as putative disease resistance genes. This work presents the first simultaneous evaluation of two manifestations of Diaporthe/Phomopsis in sunflower, and undertakes a comprehensive GWA study by integrating PSC, PHR, and SHR data. The multiple regions identified, and their exploration to identify candidate genes, contribute not only to the understanding of the genetic basis of resistance, but also to the development of tools for assisted breeding.


Subject(s)
Ascomycota , Helianthus , Saccharomycetales , Genome-Wide Association Study , Helianthus/genetics , Helianthus/microbiology , Phomopsis/genetics , Plant Breeding , Ascomycota/genetics
6.
Antioxidants (Basel) ; 11(8)2022 Aug 21.
Article in English | MEDLINE | ID: mdl-36009341

ABSTRACT

Soybean (Glycine max (L.) Merr.) establishes symbiosis with rhizobacteria, developing the symbiotic nodule, where the biological nitrogen fixation (BNF) occurs. The redox control is key for guaranteeing the establishment and correct function of the BNF process. Plants have many antioxidative systems involved in ROS homeostasis and signaling, among them a network of thio- and glutaredoxins. Our group is particularly interested in studying the differential response of nodulated soybean plants to water-deficit stress. To shed light on this phenomenon, we set up an RNA-seq experiment (for total and polysome-associated mRNAs) with soybean roots comprising combined treatments including the hydric and the nodulation condition. Moreover, we performed the initial identification and description of the complete repertoire of thioredoxins (Trx) and glutaredoxins (Grx) in soybean. We found that water deficit altered the expression of a greater number of differentially expressed genes (DEGs) than the condition of plant nodulation. Among them, we identified 12 thioredoxin (Trx) and 12 glutaredoxin (Grx) DEGs, which represented a significant fraction of the detected GmTrx and GmGrx in our RNA-seq data. Moreover, we identified an enriched network in which a GmTrx and a GmGrx interacted with each other and associated through several types of interactions with nitrogen metabolism enzymes.

7.
J Vis Exp ; (185)2022 07 01.
Article in English | MEDLINE | ID: mdl-35848824

ABSTRACT

The aim of this protocol is to provide a strategy for studying the eukaryotic translatome of the soybean (Glycine max) symbiotic nodule. This paper describes methods optimized to isolate plant-derived polyribosomes and their associated mRNAs to be analyzed using RNA-sequencing. First, cytoplasmic lysates are obtained through homogenization in polysome- and RNA-preserving conditions from whole, frozen soybean nodules. Then, lysates are cleared by low-speed centrifugation, and 15% of the supernatant is used for total RNA (TOTAL) isolation. The remaining cleared lysate is used to isolate polysomes by ultracentrifugation through a two-layer sucrose cushion (12% and 33.5%). Polysome-associated mRNA (PAR) is purified from polysomal pellets after resuspension. Both TOTAL and PAR are evaluated by highly sensitive capillary electrophoresis to meet the quality standards of sequencing libraries for RNA-seq. As an example of a downstream application, after sequencing, standard pipelines for gene expression analysis can be used to obtain differentially expressed genes at the transcriptome and translatome levels. In summary, this method, in combination with RNA-seq, allows the study of the translational regulation of eukaryotic mRNAs in a complex tissue such as the symbiotic nodule.


Subject(s)
Glycine max , Protein Biosynthesis , Polyribosomes/genetics , Polyribosomes/metabolism , RNA, Messenger/genetics , RNA-Seq , Sequence Analysis, RNA , Glycine max/genetics , Glycine max/metabolism
8.
PeerJ ; 10: e11683, 2022.
Article in English | MEDLINE | ID: mdl-35480565

ABSTRACT

Background: Plant innate immunity relies on a broad repertoire of receptor proteins that can detect pathogens and trigger an effective defense response. Bioinformatic tools based on conserved domain and sequence similarity are within the most popular strategies for protein identification and characterization. However, the multi-domain nature, high sequence diversity and complex evolutionary history of disease resistance (DR) proteins make their prediction a real challenge. Here we present RFPDR, which pioneers the application of Random Forest (RF) for Plant DR protein prediction. Methods: A recently published collection of experimentally validated DR proteins was used as a positive dataset, while 10x10 nested datasets, ranging from 400-4,000 non-DR proteins, were used as negative datasets. A total of 9,631 features were extracted from each protein sequence, and included in a full dimension (FD) RFPDR model. Sequence selection was performed, to generate a reduced-dimension (RD) RFPDR model. Model performances were evaluated using an 80/20 (training/testing) partition, with 10-cross fold validation, and compared to baseline, sequence-based and state-of-the-art strategies. To gain some insights into the underlying biology, the most discriminatory sequence-based features in the RF classifier were identified. Results and Discussion: RD-RFPDR showed to be sensitive (86.4 ± 4.0%) and specific (96.9 ± 1.5%) for identifying DR proteins, while robust to data imbalance. Its high performance and robustness, added to the fact that RD-RFPDR provides valuable information related to DR proteins underlying properties, make RD-RFPDR an interesting approach for DR protein prediction, complementing the state-of-the-art strategies.


Subject(s)
Plant Proteins , Random Forest , Plant Proteins/genetics , Disease Resistance , Amino Acid Sequence , Plants
9.
An Acad Bras Cienc ; 93(suppl 3): e20201778, 2021.
Article in English | MEDLINE | ID: mdl-34468492

ABSTRACT

The Cactaceae family is native to the American continent with several centers of diversity. In South America, one of these centers is the Central Andes and many species are considered to be threatened or vulnerable according to the International Union for Conservation of Nature (IUCN). Stetsonia coryne is an emblematic giant columnar cacti of the Chaco phytogeographic province. It has an extensive geographical distribution in many countries of the continent. However, to date there are no specific molecular markers for this species, neither reports of population genetic variability studies, such as for many cactus species. The lack of information is fundamentally due to the lack of molecular markers that allow these studies. In this work, by applying a Genotyping by Sequencing (GBS) technique, we developed polymorphic SSR markers for the Stetsonia coryne and evaluated their transferability to phylogenetically close species, in order to account for a robust panel of molecular markers for multispecies-studies within Cactaceae.


Subject(s)
Cactaceae , Cactaceae/genetics , High-Throughput Nucleotide Sequencing , South America
10.
Sci Rep ; 11(1): 6298, 2021 03 18.
Article in English | MEDLINE | ID: mdl-33737671

ABSTRACT

The advance of Next Generation Sequencing (NGS) technologies allows high-throughput genotyping at a reasonable cost, although, in the case of peach, this technology has been scarcely developed. To date, only a standard Genotyping by Sequencing approach (GBS), based on a single restriction with ApeKI to reduce genome complexity, has been applied in peach. In this work, we assessed the performance of the double-digest RADseq approach (ddRADseq), by testing 6 double restrictions with the restriction profile generated with ApeKI. The enzyme pair PstI/MboI retained the highest number of loci in concordance with the in silico analysis. Under this condition, the analysis of a diverse germplasm collection (191 peach genotypes) yielded 200,759,000 paired-end (2 × 250 bp) reads that allowed the identification of 113,411 SNP, 13,661 InDel and 2133 SSR. We take advantage of a wide sample set to describe technical scope of the platform. The novel platform presented here represents a useful tool for genomic-based breeding for peach.


Subject(s)
Genome, Plant , Genotype , High-Throughput Nucleotide Sequencing/methods , Prunus persica/enzymology , Prunus persica/genetics , Sequence Analysis, DNA/methods , Computational Biology/methods , DNA, Plant/genetics , DNA, Plant/isolation & purification , Deoxyribonucleases, Type II Site-Specific/genetics , Genetic Loci , Genotyping Techniques/methods , Plant Breeding , Polymorphism, Single Nucleotide
11.
PLoS One ; 12(12): e0189859, 2017.
Article in English | MEDLINE | ID: mdl-29261806

ABSTRACT

Sclerotinia Head Rot (SHR), a disease caused by Sclerotinia sclerotiorum, is one of the most limiting factors in sunflower production. In this study, we identified genomic loci associated with resistance to SHR to support the development of assisted breeding strategies. We genotyped 114 Recombinant Inbred Lines (RILs) along with their parental lines (PAC2 -partially resistant-and RHA266 -susceptible-) by using a 384 single nucleotide polymorphism (SNP) Illumina Oligo Pool Assay to saturate a sunflower genetic map. Subsequently, we tested these lines for SHR resistance using assisted inoculations with S. sclerotiorum ascospores. We also conducted a randomized complete-block assays with three replicates to visually score disease incidence (DI), disease severity (DS), disease intensity (DInt) and incubation period (IP) through four field trials (2010-2014). We finally assessed main effect quantitative trait loci (M-QTLs) and epistatic QTLs (E-QTLs) by composite interval mapping (CIM) and mixed-model-based composite interval mapping (MCIM), respectively. As a result of this study, the improved map incorporates 61 new SNPs over candidate genes. We detected a broad range of narrow sense heritability (h2) values (1.86-59.9%) as well as 36 M-QTLs and 13 E-QTLs along 14 linkage groups (LGs). On LG1, LG10, and LG15, we repeatedly detected QTLs across field trials; which emphasizes their putative effectiveness against SHR. In all selected variables, most of the identified QTLs showed high determination coefficients, associated with moderate to high heritability values. Using markers shared with previous Sclerotinia resistance studies, we compared the QTL locations in LG1, LG2, LG8, LG10, LG11, LG15 and LG16. This study constitutes the largest report of QTLs for SHR resistance in sunflower. Further studies focusing on the regions in LG1, LG10, and LG15 harboring the detected QTLs are necessary to identify causal alleles and contribute to unraveling the complex genetic basis governing the resistance.


Subject(s)
Ascomycota/physiology , Disease Resistance/genetics , Epistasis, Genetic , Helianthus/genetics , Helianthus/microbiology , Plant Diseases/microbiology , Quantitative Trait Loci/genetics , Chromosome Mapping , Genetic Linkage , Genetic Markers , Genotype , Inbreeding , Phenotype , Polymorphism, Single Nucleotide/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...