Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Sci Rep ; 14(1): 9807, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38684748

ABSTRACT

The mechanism of interaction between magnesite mineral and phosphoric acid (0.001-0.5 M) in addition to the determination of the protective properties for Ti alloy (working electrode) in phosphoric acid both with and without an inhibitor have been investigated by electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization measurements. Results of electrochemical tests show that the corrosion resistance of titanium alloy in phosphoric acid solution only increased and hydrogen production decreased by either decreasing acid concentration or increasing immersion time associated with the thickening of the oxide film formed on the alloy surface. On adding magnesite, the corrosion resistance of Ti alloy is enhanced by increasing the phosphoric acid concentration (0.001-0.5 M) due to the formation of sparingly soluble magnesium phosphate film on the alloy surface that inhibits the effect of increasing hydrogen evolution reaction due to the pH value decreases. The increasing adsorption behavior of the magnesite inhibitor and decreasing its diffusion were deduced from EIS measurements. Thus, the addition of 3% magnesite minimizes the corrosion by forming a new protective film (Mg3(PO4)2), which differs from the traditional passive film and prevents the effect of the increase of hydrogen evolution. The surface morphology and chemical composition of the tested alloy were determined using scanning electron microscopy (SEM), Fourier transform Infra-Red spectroscopy (FTIR), X-ray diffraction (XRD), X-ray Fluorescence (XRF) and In situ Raman spectroscopy.

2.
Materials (Basel) ; 16(23)2023 Nov 30.
Article in English | MEDLINE | ID: mdl-38068189

ABSTRACT

Mining waste is an obvious source of environmental pollution due to the presence of heavy metals, which can contaminate soils, water resources, sediments, air, and people living nearby. The F-(Ba-Pb-Zn) deposit of Hammam Zriba located in northeast Tunisia, 8 km southeast of Zaghouan was intensively exploited from 1970 to 1992. More than 250,000 m3 of flotation tailings were produced and stored in the open air in three dumps without any measure of environmental protection. Thus, in this paper, mineralogical and chemical characterization, especially the sulfide and carbonate phases, were carried out to evaluate the potential for acid mining drainage (AMD) and metal leaching (ML). Conventional analytical methods (XRD, XRF, SEM) have revealed that this mining waste contains on average 34.8% barite-celestine series, 26.6% calcite, 23% quartz, 6.3% anglesite, 4.8% fluorite, 2.1% pyrite, and 0.4% sphalerite. The content of sulfides is less important. The tailing leaching tests (AFNOR NFX 31-210 standard) did not generate acidic leachate (pH: 8.3). The acidity produced by sulfide oxidation was neutralized by calcite present in abundance. Furthermore, the leaching tests yielded leachates with high concentrations of heavy metals, above the authorized thresholds. This high mobilization rate in potential toxic elements (PTE) represents a contamination risk for the environment.

3.
Ultrasonics ; 117: 106516, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34352458

ABSTRACT

In this work, we experimentally investigated the dynamics of vapor-gas bubbles arising in distilled water under the action of ultrasound (US), near and on the surface of solid plates with various surface properties. In the experiments, we used the plates made of Teflon, acrylic glass, and amorphous quartz, with various hydrophobic properties (contact angle). The experiments showed a significant effect of surface properties on the dynamics of bubbles oscillating near and on a solid surface under the influence of ultrasound. In the case of a hydrophobic surface (Teflon), steady attachment of bubbles is observed, the surface area covered by the bubbles grows according to a law close to linear, and then it reaches a plateau. For less hydrophobic surfaces, the drift and rising of bubbles along the plates are observed, as a result of which, the area covered by the bubbles grows less rapidly over time. When the ultrasound is switched off some bubbles located near and on the surface of the acrylic plate float and drag other bubbles with them, differ from the surface of Teflon. This behavior of the bubbles limits both their maximum possible diameter and the maximum solid surface area covered by the bubble. In addition, experiments showed a significant effect of the concentration of gas dissolved in a liquid on the process of bubble formation: a decrease in gas concentration led to a qualitative change in the time dependence of the surface area covered by the bubbles; in the case of long-term degassing of water using ultrasound, the formation of extended bubble clusters on all solid surfaces becomes impossible.

4.
Materials (Basel) ; 14(15)2021 Jul 24.
Article in English | MEDLINE | ID: mdl-34361321

ABSTRACT

The mass production of synthetic plastics began in the last century and today they have become one of the most abundant man-made materials. The disposal or the beneficiation of end-of-life plastics represent a great challenge for society especially in the case of polyvinyl chloride (PVC). This study is focused on the use of PVC waste as a useful agent for the direct reduction of hematite (Fe2O3) after a thermal treatment at 300 °C for removing the chlorine contained in PVC. Thermal reduction tests were conducted from 600 °C to 1100 °C with (Fe2O3 + PVC + clay) pellet mixtures in which clay was used as plasticizing and binder agent of the pellets. The starting samples and treatment residues were analyzed by scanning electron microscopy through energy dispersive spectroscopy (SEM-EDS) and X-ray diffraction (XRD) to monitor the chemical behavior and reactivity of the pellet constituents during their thermal treatment. The stepwise reduction of hematite up to metallic iron was achieved at temperatures approaching 1000 °C, confirming the capability of using PVC waste for the direct reduction of iron oxides.

5.
J Colloid Interface Sci ; 583: 692-703, 2021 Feb 01.
Article in English | MEDLINE | ID: mdl-33039866

ABSTRACT

HYPOTHESIS: The adsorption mechanisms of fatty acids on minerals are largely debated from years, and their understanding is now required to improve flotation processing in the critical context of raw materials. Three wavenumbers have been observed in the literature for the asymmetric stretching vibration of COO- after the adsorption of fatty acids on mineral surfaces. They have been interpreted as different adsorbed forms, such as a precipitate formation, an adsorption of sole or bridged carboxylates, an anion exchange, or adsorbed modes, such as monodentate or bidentate configurations. EXPERIMENTS/THEORY: Diffuse reflectance infrared Fourier transform spectroscopy was combined with ab initio molecular dynamics simulations and simulation of infrared spectra. Fluorite and sodium octanoate - or longer-chain fatty acids - were used as prototypical materials for all the investigations. FINDINGS: At low fatty acids concentration, the asymmetric stretching vibration of COO- peaks at 1560 cm-1 while, at higher concentration, this infrared band converts into a doublet peaking at 1535 and 1575 cm-1. Using simulations, we assign the band at 1560 cm-1 to the adsorption of a carboxylate molecule bridged on a sodium counter-cation and the doublet at 1535 and 1575 cm-1 to the adsorption of the sole carboxylate anion under a monodentate or a bidentate binuclear configuration, respectively. The formation of an adsorbed layer on the mineral surface is initiated by the adsorption of a sodium carboxylate and followed by the adsorption of mixed sole anionic forms. The role of the carboxylate counter-cation is highlighted for the first time, which was totally ignored in the literature beforehand. This particularly opens the path to the development of innovative strategies to enhance the separation contrast between minerals, which is of uttermost importance for the recovery of critical raw materials.

6.
Materials (Basel) ; 13(20)2020 Oct 09.
Article in English | MEDLINE | ID: mdl-33050262

ABSTRACT

The most economically important iron-chromium bearing minerals is chromite. In natural deposits, iron(II) is frequently substituted by magnesium(II) while chromium(III) is replaced by aluminum(III) and/or iron(III) forming a complex chromium bearing material. The majority of mined chromite is intended for the production of ferrochrome which requires a chromite concentrate with high chromium-to-iron ratio. Found mostly in the spinel chromite structure, iron cannot be removed by physical mineral processing methods. In this frame, the present work deals with the reaction of chlorine and chlorine+oxygen with selected samples of chromite concentrates for assessing the reactivity of their components towards chlorinating atmosphere, allowing the preferential removal of iron, hence meeting the chromite metallurgical grade requirements. Isothermal thermogravimetric analysis was used as a reliable approach for the kinetic reactivity investigation. Results indicated a wide difference in the thermal behavior of chromite constituents in a chlorinating atmosphere when considering their respective values of apparent activation energy oscillating from about 60 to 300 kJ/mol as a function of the sample reacted fraction. During the chromite treatment by chlorine in presence of oxygen, chromium was recovered as liquid chromyl chloride by condensation of the reaction gas phase.

7.
Front Chem ; 8: 230, 2020.
Article in English | MEDLINE | ID: mdl-32373577

ABSTRACT

Recently, tungsten has drawn worldwide attention considering its high supply risk and economic importance in the modern society. Skarns represent one of the most important types of tungsten deposits in terms of reserves. They contain fine-grained scheelite (CaWO4) associated with complex gangue minerals, i.e., minerals that display similar properties, particularly surface properties, compared to scheelite. Consistently, the froth flotation of scheelite still remains, in the twenty first century, a strong scientific, industrial, and technical challenge. Various reagents suitable for scheelite flotation (collectors and depressants, mostly) are reviewed in the present work, with a strong focus on the separation of scheelite from calcium salts, namely, fluorite, apatite, and calcite, which generally represent significant amounts in tungsten skarns. Albeit some reagents allow increasing significantly the selectivity regarding a mineral, most reagents fail in providing a good global selectivity in favor of scheelite. Overall, the greenest, most efficient, and cheapest method for scheelite flotation is to use fatty acids as collectors with sodium silicate as depressant, although this solution suffers from a crucial lack of selectivity regarding the above-mentioned calcium salts. Therefore, the use of reagent combinations, commonly displaying synergistic effects, is highly recommended to achieve a selective flotation of scheelite from the calcium salts as well as from calcium silicates.

8.
Chem Sci ; 10(43): 9928-9940, 2019 Nov 21.
Article in English | MEDLINE | ID: mdl-32190236

ABSTRACT

The synergistic effects between sodium silicate (Na2SiO3) and sodium carbonate (Na2CO3) adsorbed on mineral surfaces are not yet understood, making it impossible to finely tune their respective amounts in various industrial processes. In order to unravel this phenomenon, diffuse reflectance infrared Fourier transform and X-ray photoelectron spectroscopies were combined with ab initio molecular dynamics to investigate the adsorption of Na2SiO3 onto bare and carbonated fluorite (CaF2), an archetypal calcium mineral. Both experimental and theoretical results proved that Na2CO3 adsorbs onto CaF2 with a high affinity and forms a layer of Na2CO3 on the surface. Besides, at low Na2SiO3 concentration, silica mainly physisorbs in a monomeric protonated form, Si(OH)4, while at larger concentration, significant amounts of polymerised and deprotonated forms are identified. Prior surface carbonation induces an acid-base reaction on the surface, which results in the formation of the basic forms of the monomers and the dimers, i.e. SiO(OH)3 - and Si2O3(OH)4 2-, even at low coverage. Their adsorption is highly favoured compared to the acid forms, which explains the synergistic effects observed when Na2SiO3 is used after Na2CO3. The formation of the basic form on the bare surface is observed only by increasing the surface coverage to 100%. Hence, when Na2CO3 is used during a separation process, lower Na2SiO3 concentrations are needed to obtain the same effect as with lone Na2SiO3 in the separation process.

9.
J Phys Chem B ; 122(51): 12403-12410, 2018 Dec 27.
Article in English | MEDLINE | ID: mdl-30481022

ABSTRACT

The adsorption of fatty acids with various chain structures on the (111) fluorite surface is investigated using density functional theory, including a correction for dispersive interactions. In the case of the acidic form, we observe that the molecular form is preferred over the dissociated one and the molecule adsorbs on a surface calcium atom with an energy of -78.2 kJ mol-1. Also, we show that the carboxylate anion adsorbs on the surface under two possible configurations, a bidentate binuclear one or a monodentate one, the bidentate binuclear being favored. At both 0 and 300 K, the chain length does not affect the geometry of the carboxyl group but it strongly impacts the global geometry of the molecule adsorption on the fluorite surface: the "flat" adsorption mode, i.e., when the molecule is parallel to the surface, is favored when the number of carbon atoms is equal to or higher than 6, due to dispersion forces. However, when the molecule is in hydrated condition, the chain folds up by itself to reduce the interactions with water while the carboxylate group adsorbs in monodentate configuration. In aqueous conditions, the chain length does not impact anymore the adsorption energies, the vertical adsorption mode being always favored.

10.
J Phys Chem B ; 122(26): 6829-6836, 2018 07 05.
Article in English | MEDLINE | ID: mdl-29709180

ABSTRACT

Density functional theory simulations, including a correction for dispersive interactions, were performed to investigate the adsorption of water on the main cleavage plane of the fluorite, namely, the (111) surface. In the case of a single molecule of water, we observe that the molecular form is preferred over the dissociated one, and absorbs on the surface with an energy of -55 kJ mol-1, including a significant contribution from the dispersion forces. Also, we show that the substitution of a fluorine atom by a hydroxyl group on the surface of fluorite is not energetically favorable. Then, the hydration of the surface in function of the coverage by water molecules was studied in a systematic way. It was shown that the geometries involving the formation of a cluster of water molecules on the surface, with half of the molecules adsorbed, are the most favorable. Finally, ab initio molecular dynamics conducted at 300 K confirms the trends observed at 0 K, albeit the adsorption energies are reduced by about 10 kJ mol-1. Also, we observe that once put in the interaction with a large number of water molecules, half of the calcium atoms at the surface are in close interaction with a water molecule, whereas the rest of the molecules are further away but present a relatively well-defined structure showing similarities with the one of water clusters.

11.
J Hazard Mater ; 171(1-3): 731-8, 2009 Nov 15.
Article in English | MEDLINE | ID: mdl-19631465

ABSTRACT

Disposal of NaCl-containing cuttings is a major environmental concern due to the high solubility of chlorides. The present work aims at reducing the solubility of chloride by encapsulation in low permeability matrix as well as lowering its solubility by trapping into low-solubility phases. Both the studied materials were cuttings from an oil-based mud in oil drillings containing about 50% of halite, and cuttings in water-based mud from gas drilling containing 90% of halite. A reduction in the amount of dissolved salt from 41 to 19% according to normalized leaching tests was obtained by addition of potassium ortho-phosphate in the mortar formula of oil-based cuttings, while the aluminium dihydrogeno-phosphate is even more efficient for the stabilization of water-based cuttings with a NaCl content of 90%. Addition of ortho-phosphate leads to form a continuous and weakly soluble network in the cement matrix, which reduces the release of salt. The formed mineralogical phases were apatite and hydrocalumite. These phases encapsulate the salt grains within a network, thus lowering its interaction with water or/and trap chloride into low-solubility phases. The tested approaches allow to develop a confinement process of NaCl-containing waste of various compositions that can be applied to wastes, whatever the salt content and the nature of the drilling fluids (water or oil).


Subject(s)
Sodium Chloride/chemistry , Waste Disposal, Fluid/methods , Water Purification/methods , Chemistry Techniques, Analytical , Construction Materials , Environment , Industrial Waste , Materials Testing , Microscopy, Electron, Scanning/methods , Phosphates/chemistry , Potassium Compounds/chemistry , Refuse Disposal , Solubility , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL