Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 23(21)2022 Nov 07.
Article in English | MEDLINE | ID: mdl-36362406

ABSTRACT

A decrease in the miR-124 expression was observed in various epithelial cancers. Like a classical suppressor, miR-124 can inhibit the translation of multiple oncogenic proteins. Epigenetic mechanisms play a significant role in the regulation of miR-124 expression and involve hypermethylation of the MIR-124-1/-2/-3 genes and the effects of long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) according to the model of competing endogenous RNAs (ceRNAs). More than 40 interactomes (lncRNA/miR-124/mRNA) based on competition between lncRNAs and mRNAs for miR-124 binding have been identified in various epithelial cancers. LncRNAs MALAT1, NEAT1, HOXA11-AS, and XIST are the most represented in these axes. Fourteen axes (e.g., SND1-IT1/miR-124/COL4A1) are involved in EMT and/or metastasis. Moreover, eight axes (e.g., OIP5-AS1/miR-124-5p/IDH2) are involved in key pathways, such as Wnt/b-catenin, E2F1, TGF-ß, SMAD, ERK/MAPK, HIF-1α, Notch, PI3K/Akt signaling, and cancer cell stemness. Additionally, 15 axes impaired patient survival and three axes reduced chemo- or radiosensitivity. To date, 14 cases of miR-124 regulation by circRNAs have been identified. Half of them involve circHIPK3, which belongs to the exonic ecircRNAs and stimulates cell proliferation, EMT, autophagy, angiogenesis, and multidrug resistance. Thus, miR-124 and its interacting partners may be considered promising targets for cancer therapy.


Subject(s)
Bone Neoplasms , Lung Neoplasms , MicroRNAs , Osteosarcoma , RNA, Long Noncoding , Humans , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , RNA, Circular/genetics , Phosphatidylinositol 3-Kinases/metabolism , Gene Expression Regulation, Neoplastic , MicroRNAs/genetics , MicroRNAs/metabolism , Cell Proliferation/genetics , Osteosarcoma/metabolism , Lung Neoplasms/metabolism , Bone Neoplasms/metabolism , Endonucleases/metabolism
2.
Biomedicines ; 10(4)2022 Mar 31.
Article in English | MEDLINE | ID: mdl-35453574

ABSTRACT

Ovarian cancer (OC) is one of the most common types of cancer among malignancies of the female reproductive system. This pathology is asymptomatic until advanced stages and has a poor prognosis. Our study aimed to search for lncRNA-miRNA-mRNA competing triplets that promote ovarian tumorigenesis. For this purpose, we analyzed tumor samples from the TCGA database and verified the results experimentally in a set of 46 paired samples of tumor and matched histologically unchanged ovarian tissues from OC patients. The list of RNAs selected in silico for experimental studies included 13 mRNAs, 10 lncRNAs, and 5 miRNAs related to epithelial-mesenchymal transition and angiogenesis. We evaluated the expression of these RNAs by qRT-PCR and assessed the correlation between levels of miRNAs, mRNAs, and lncRNAs. Sixteen significant triplets were revealed, in some of which, e.g., OIP5-AS1-miR-203a-c-MET and OIP5-AS1-miR-203a-ZEB2, both lncRNA and mRNA had sites for miR-203a direct binding. Transfection of the OVCAR-3 and SKOV-3 cell lines with the miR-203a mimic was used to confirm the novel links of miR-203a with ZEB2 and c-MET in OC. These connections suggest that the interactomes have the potential for diagnostics of metastasis at early onset.

3.
Int J Mol Sci ; 23(3)2022 Jan 24.
Article in English | MEDLINE | ID: mdl-35163224

ABSTRACT

Our work aimed to differentiate 20 aberrantly methylated miRNA genes that participate at different stages of development and metastasis of ovarian carcinoma (OvCa) using methylation-specific qPCR in a representative set of clinical samples: 102 primary tumors without and with metastases (to lymph nodes, peritoneum, or distant organs) and 30 peritoneal macroscopic metastases (PMM). Thirteen miRNA genes (MIR107, MIR124-2, MIR124-3, MIR125B-1, MIR127, MIR129-2, MIR130B, MIR132, MIR193A, MIR339, MIR34B/C, MIR9-1, and MIR9-3) were hypermethylated already at the early stages of OvCa, while hypermethylation of MIR1258, MIR137, MIR203A, and MIR375 was pronounced in metastatic tumors, and MIR148A showed high methylation levels specifically in PMM. We confirmed the significant relationship between methylation and expression levels for 11 out of 12 miRNAs analyzed by qRT-PCR. Moreover, expression levels of six miRNAs were significantly decreased in metastatic tumors in comparison with nonmetastatic ones, and downregulation of miR-203a-3p was the most significant. We revealed an inverse relationship between expression levels of miR-203a-3p and those of ZEB1 and ZEB2 genes, which are EMT drivers. We also identified three miRNA genes (MIR148A, MIR9-1, and MIR193A) that likely regulate EMT-MET reversion in the colonization of PMM. According to the Kaplan-Meier analysis, hypermethylation of several examined miRNA genes was associated with poorer overall survival of OvCa patients, and high methylation levels of MIR130B and MIR9-1 were related to the greatest relative risk of death.


Subject(s)
MicroRNAs/genetics , Neoplasm Recurrence, Local/genetics , Ovarian Neoplasms/genetics , Carcinoma/genetics , Carcinoma/pathology , Carcinoma, Ovarian Epithelial/genetics , Female , Gene Expression/genetics , Gene Expression Regulation, Neoplastic/genetics , Humans , Machine Learning , Methylation , Neoplasm Metastasis/genetics , Neoplasm Staging , Ovarian Neoplasms/pathology , Peritoneum/metabolism , Prognosis , Recurrence , Transcriptome/genetics
4.
Int J Mol Sci ; 22(20)2021 Oct 17.
Article in English | MEDLINE | ID: mdl-34681854

ABSTRACT

The fundamental novelty in the pathogenesis of renal cell carcinoma (RCC) was discovered as a result of the recent identification of the role of long non-coding RNAs (lncRNAs). Here, we discuss several mechanisms for the dysregulation of the expression of protein-coding genes initiated by lncRNAs in the most common and aggressive type of kidney cancer-clear cell RCC (ccRCC). A model of competitive endogenous RNA (ceRNA) is considered, in which lncRNA acts on genes through the lncRNA/miRNA/mRNA axis. For the most studied oncogenic lncRNAs, such as HOTAIR, MALAT1, and TUG1, several regulatory axes were identified in ccRCC, demonstrating a number of sites for various miRNAs. Interestingly, the LINC00973/miR-7109/Siglec-15 axis represents a novel agent that can suppress the immune response in patients with ccRCC, serving as a valuable target in addition to the PD1/PD-L1 pathway. Other mechanisms of action of lncRNAs in ccRCC, involving direct binding with proteins, mRNAs, and genes/DNA, are also considered. Our review briefly highlights methods by which various mechanisms of action of lncRNAs were verified. We pay special attention to protein targets and signaling pathways with which lncRNAs are associated in ccRCC. Thus, these new data on the different mechanisms of lncRNA functioning provide a novel basis for understanding the pathogenesis of ccRCC and the identification of new prognostic markers and targets for therapy.


Subject(s)
Carcinoma, Renal Cell/metabolism , Gene Expression Regulation, Neoplastic , Kidney Neoplasms/metabolism , RNA, Long Noncoding/metabolism , Signal Transduction , Carcinoma, Renal Cell/genetics , Humans , Kidney Neoplasms/genetics
5.
Int J Mol Sci ; 22(13)2021 Jun 24.
Article in English | MEDLINE | ID: mdl-34202777

ABSTRACT

Long noncoding RNAs (lncRNAs) have been identified as contributors to the development and progression of cancer through various functions and mechanisms. LncRNA GAS5 is downregulated in multiple cancers and acts as a tumor suppressor in breast cancer. GAS5 interacts with various proteins (e.g., E2F1, EZH2, and YAP), DNA (e.g., the insulin receptor promoter), and various microRNAs (miRNAs). In breast cancer, GAS5 binds with miR-21, miR-222, miR-221-3p, miR-196a-5p, and miR-378a-5p that indicates the presence of several elements for miRNA binding (MREs) in GAS5. Mediated by the listed miRNAs, GAS5 is involved in the upregulation of a number of mRNAs of suppressor proteins such as PTEN, PDCD4, DKK2, FOXO1, and SUFU. Furthermore, the aberrant promoter methylation is involved in the regulation of GAS5 gene expression in triple-negative breast cancer and some other carcinomas. GAS5 can stimulate apoptosis in breast cancer via diverse pathways, including cell death receptors and mitochondrial signaling pathways. GAS5 is also a key player in the regulation of some crucial signal pathways in breast cancer, such as PI3K/AKT/mTOR, Wnt/ß-catenin, and NF-κB signaling. Through epigenetic and other mechanisms, GAS5 can increase sensitivity to multiple drugs and improve prognosis. GAS5 is thus a promising target in the treatment of breast cancer patients.


Subject(s)
Breast Neoplasms/genetics , Gene Expression Regulation, Neoplastic , RNA, Long Noncoding/genetics , Animals , Apoptosis/genetics , Biomarkers, Tumor , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Breast Neoplasms/therapy , Cell Line, Tumor , DNA Methylation , Epigenesis, Genetic , Female , Humans , MicroRNAs/genetics , Neoplasm Metastasis , Neoplasm Staging , Prognosis , Signal Transduction
6.
Transl Oncol ; 14(8): 101121, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34030112

ABSTRACT

BACKGROUND: Lorlatinib is a novel potent ALK inhibitor, with only a few studies reporting the results of its clinical use. METHODS: This study describes the outcomes of lorlatinib treatment for 35 non-small cell lung cancer patients with ALK rearrangements, who had 2 (n = 5), 1 (n = 26) or none (n = 4) prior tyrosine kinase inhibitors and received lorlatinib mainly within the compassionate use program. RESULTS: Objective tumor response (OR) and disease control (DC) were registered in 15/35 (43%) and 33/35 (94%) patients, respectively; brain metastases were particularly responsive to the treatment (OR: 22/27 (81%); DC: 27/27 (100%)). Median progression free survival (PFS) was estimated to be 21.8 months, and median overall survival (OS) approached to 70.1 months. Only 4 out of 35 patients experienced no adverse effects; two of them were the only subjects who had no clinical benefit from lorlatinib. PFS and OS in the no-adverse-events lorlatinib users were strikingly lower as compared to the remaining patients (1.1 months vs. 23.7 months and 10.5 months vs. not reached, respectively; p < 0.0001 for both comparisons). ALK translocation variants were known for 28 patients; there was no statistical difference between patients with V.1 and V.3 rearrangements with regard to the OS or PFS. CONCLUSION: Use of lorlatinib results in excellent disease outcomes, however caution must be taken for patients experiencing no adverse effects from this drug.

7.
Int J Mol Sci ; 21(22)2020 Nov 23.
Article in English | MEDLINE | ID: mdl-33238475

ABSTRACT

Ovarian cancer (OvCa) develops asymptomatically until it reaches the advanced stages with metastasis, chemoresistance, and poor prognosis. Our review focuses on the analysis of regulatory long non-coding RNAs (lncRNAs) competing with protein-coding mRNAs for binding to miRNAs according to the model of competitive endogenous RNA (ceRNA) in OvCa. Analysis of publications showed that most lncRNAs acting as ceRNAs participate in OvCa progression: migration, invasion, epithelial-mesenchymal transition (EMT), and metastasis. More than 30 lncRNAs turned out to be predictors of survival and/or response to therapy in patients with OvCa. For a number of oncogenic (CCAT1, HOTAIR, NEAT1, and TUG1 among others) and some suppressive lncRNAs, several lncRNA/miRNA/mRNA axes were identified, which revealed various functions for each of them. Our review also considers examples of alternative mechanisms of actions for lncRNAs besides being ceRNAs, including binding directly to mRNA or protein, and some of them (DANCR, GAS5, MALAT1, and UCA1 among others) act by both mechanisms depending on the target protein. A systematic analysis based on the data from literature and Panther or KEGG (Kyoto Encyclopedia of Genes and Genomes) databases showed that a significant part of lncRNAs affects the key pathways involved in OvCa metastasis, EMT, and chemoresistance.


Subject(s)
Carcinogenesis/genetics , MicroRNAs/genetics , Ovarian Neoplasms/genetics , RNA, Long Noncoding/genetics , Disease Progression , Epithelial-Mesenchymal Transition/genetics , Female , Gene Expression Regulation, Neoplastic/genetics , Gene Regulatory Networks/genetics , Humans , Neoplasm Metastasis , Ovarian Neoplasms/pathology , RNA, Messenger/genetics , Signal Transduction/genetics
8.
Biochimie ; 154: 19-24, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30071258

ABSTRACT

Multiple laboratory evidences indicate that distinct variants of ALK translocations differ in their biochemical properties and responsiveness to ALK tyrosine kinase inhibitors (TKIs). These data are supported by some clinical studies, which showed improved responses to crizotinib in non-small cell lung cancer (NSCLC) patients carrying particular variants of ALK translocation. We retrospectively considered 64 Russian patients with ALK-rearranged NSCLC, who were treated by crizotinib (n = 23), ceritinib (n = 39) or alectinib (n = 2). ALK fusion variants were genotyped by PCR. Median progression-free survival (PFS) approached to 18 and 21 months in subjects with "short" (v.3a/b, v.5a/b) vs. "long" (TAPE-domain containing) fusion variants (p = 0.783), respectively; similar data were obtained while comparing EML4/ALK variant 1 vs. other ALK translocations (19 and 21 months, respectively; p = 0.604). Objective response rates were also strikingly similar in the above groups ("short": 88%, "long": 77%, p = 0.479; variant 1: 76%, other translocations: 81%, p = 0.753). Furthermore, ALK variants did not influence the disease outcomes when patients treated by crizotinib and ceritinib were analyzed separately. Overall, PFS on ALK TKI did not depend on whether the drug was administered upfront or after chemotherapy. Ceritinib produced significantly longer PFS than crizotinib (p = 0.022). In conclusion, this study revealed that distinct ALK translocation variants render similar clinical responsiveness to ALK inhibitors.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Oncogene Proteins, Fusion , Protein Kinase Inhibitors/administration & dosage , Receptor Protein-Tyrosine Kinases , Adult , Aged , Anaplastic Lymphoma Kinase , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/enzymology , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/mortality , Disease-Free Survival , Female , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/enzymology , Lung Neoplasms/genetics , Lung Neoplasms/mortality , Male , Middle Aged , Oncogene Proteins, Fusion/antagonists & inhibitors , Oncogene Proteins, Fusion/genetics , Receptor Protein-Tyrosine Kinases/antagonists & inhibitors , Receptor Protein-Tyrosine Kinases/genetics , Survival Rate
9.
Gene ; 662: 28-36, 2018 Jul 01.
Article in English | MEDLINE | ID: mdl-29631007

ABSTRACT

Methylation of promoter CpG islands may suppress the function of miRNAs by inhibiting their expression. Our work analyzes the role of promoter methylation in altering the expression of 12 miRNAs associated with epithelial ovarian cancer (EOC): miR-124-3p, -125b-5p, -127-5p, -129-5p, -132-3p, -137, -148a-3p, -191-5p, -193a-5p, -203a, -339-3p, and -375. The role of methylation in the deregulation of these miRNAs has not been previously assessed in a representative set of EOC samples. Using 76 paired (tumor/matched normal) ovarian samples and methylation-specific PCR, we demonstrated significant aberrations in the methylation patterns of 11 miRNA genes and identified 8 novel hypermethylated miRNA genes (MIR-124-1, -124-2, -124-3, -127, -132, -137, -193A, and -339) as well as one hypomethylated miRNA gene (MIR-191). Quantitative PCR on a subset of 29 paired EOC samples allowed us to establish a strong correlation between methylation status and alterations in expression levels for all 12 miRNAs studied. These findings demonstrate the functional role of aberrant methylation of examined miRNA genes in EOC. Moreover, we showed a significant association of hypermethylation of 10 miRNA genes (MIR-124-2, -124-3, -125B-1, -127, -129-2, -137, -193A, -203A, -339, -375) with EOC metastasis to lymph nodes, peritoneum, and distant organs. Interestingly, MIR-203A and MIR-375 were hypermethylated only in disseminated ovarian tumors, implying that non-suppressor miR-203a and miR-375 have anti-metastatic properties. Hypermethylation of 10 miRNA genes in EOC metastases was validated using an additional sample set of 13 primary tumors and matched peritoneal metastases. Together, these results show the impact of aberrant methylation on deregulation of 12 miRNAs in EOC, the involvement of 10 hypermethylated miRNA genes in metastasis (including peritoneal macro-metastases), and suggest novel potential biomarkers.


Subject(s)
Gene Expression Profiling/methods , MicroRNAs/genetics , Neoplasms, Glandular and Epithelial/genetics , Ovarian Neoplasms/genetics , Biomarkers, Tumor/genetics , Carcinoma, Ovarian Epithelial , CpG Islands/genetics , DNA Methylation , Down-Regulation , Epigenesis, Genetic/genetics , Female , Gene Expression Regulation, Neoplastic/genetics , Histology , Humans , Methylation , MicroRNAs/metabolism , Neoplasm Metastasis , Neoplasms, Glandular and Epithelial/metabolism , Ovarian Neoplasms/metabolism , Promoter Regions, Genetic/genetics , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL