Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Mar Environ Res ; 191: 106151, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37604088

ABSTRACT

In recent decades, economic activity has sharply increased in the Pechora Sea, one of the most hydrologically unique areas of the Barents Sea. Hence, the information about the current state of its ecosystems is quite important for assessing their possible changes in the future. The aim of the present study was to analyze the distribution of macrobenthos and assess its ecological quality in the southeastern part of the Pechora Sea at the beginning of the 21st century (based on data collected in 2012-2013). The results showed that since 1920s there have been no serious changes in the macrobenthos in the studied area. The weak shifts detected in the benthic fauna were either within the natural range of fluctuations in population of common species, or may be associated with differences in the methodological approaches of different researches. Heterogeneity in the macrobenthos distribution, the most significant abiotic factors identified in relation to it, quantitative indicators of biota, and species dominating in communities were similar to those revealed in previous studies. As of 2013, the characteristics of benthic communities in the southeastern part of the Pechora Sea, including their ecological quality, allow us to refer them as undisturbed biosystems.


Subject(s)
Biota , Ecosystem
2.
Proc Natl Acad Sci U S A ; 119(30): e2120489119, 2022 07 26.
Article in English | MEDLINE | ID: mdl-35867828

ABSTRACT

Cellular lipid uptake (through endocytosis) is a basic physiological process. Dysregulation of this process underlies the pathogenesis of diseases such as atherosclerosis, obesity, diabetes, and cancer. However, to date, only some mechanisms of lipid endocytosis have been discovered. Here, we show a previously unknown mechanism of lipid cargo uptake into cells mediated by the receptor Mincle. We found that the receptor Mincle, previously shown to be a pattern recognition receptor of the innate immune system, tightly binds a range of self-lipids. Moreover, we revealed the minimal molecular motif in lipids that is sufficient for Mincle recognition. Superresolution microscopy showed that Mincle forms vesicles in cytoplasm and colocalizes with added fluorescent lipids in endothelial cells but does not colocalize with either clathrin or caveolin-1, and the added lipids were predominantly incorporated in vesicles that expressed Mincle. Using a model of ganglioside GM3 uptake in brain vessel endothelial cells, we show that the knockout of Mincle led to a dramatic decrease in lipid endocytosis. Taken together, our results have revealed a fundamental lipid endocytosis pathway, which we call Mincle-mediated endocytosis (MiME), and indicate a prospective target for the treatment of disorders of lipid metabolism, which are rapidly increasing in prevalence.


Subject(s)
Endocytosis , Lectins, C-Type , Lipid Metabolism , Membrane Proteins , Animals , Biological Transport/genetics , Biological Transport/physiology , Endocytosis/genetics , Endocytosis/physiology , Endothelial Cells/metabolism , Lectins, C-Type/genetics , Lectins, C-Type/metabolism , Lipids , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice
3.
Pharmaceuticals (Basel) ; 14(3)2021 Mar 08.
Article in English | MEDLINE | ID: mdl-33800457

ABSTRACT

This work is devoted to the search for new antiherpes simplex virus type 1 (HSV-1) drugs among synthetic tetrapyrroles and to an investigation of their antiviral properties under nonphotodynamic conditions. In this study, novel amphiphilic 5,10,15,20-tetrakis(4-(3-pyridyl-n-propanoyl)oxyphenyl)porphyrin tetrabromide (3a), 5,10,15,20-tetrakis(4-(6-pyridyl-n-hexanoyl)oxyphenyl)porphyrin tetrabromide (3b) and known 5,10,15,20-tetrakis(1-methyl-4-pyridinio)porphyrin tetraiodide (TMePyP) were synthesized, and their dark antiviral activity in vitro against HSV-1 was studied. The influence of porphyrin's nanosized delivery vehicles based on Pluronic F127 on anti-HSV-1 activity was estimated. All the received compounds 3a, 3b and TMePyP showed virucidal efficiency and had an effect on viral replication stages. The new compound 3b showed the highest antiviral activity, close to 100%, with the lowest concentration, while the maximum TMePyP activity was observed with a high concentration; porphyrin 3a was the least active. The inclusion of the synthesized compounds in Pluronic F-127 polymeric micelles had a noticeable effect on antiviral activity only at higher porphyrin concentrations. Action of the received compounds differs by influence on the early or later reproduction stages. While 3a and TMePyP acted on all stages of the viral replication cycle, porphyrin 3b inhibited viral replication during the early stages of infection. The resulting compounds are promising for the development of utilitarian antiviral agents and, possibly, medical antiviral drugs.

4.
Dev Dyn ; 248(8): 728-743, 2019 08.
Article in English | MEDLINE | ID: mdl-30566266

ABSTRACT

BACKGROUND: foxA orthologs are involved in various processes from embryo patterning to regulation of metabolism. Since foxA conserved role in the development of the gut of errant annelids has never been thoroughly studied, we used a candidate gene approach to unravel the molecular profile of the alimentary canal in two closely related nereid worms with a trochophore-type lecithotrophic larva. RESULTS: The character of foxA expression in the two polychaetes was similar but not identical. The genes were successively activated first in blastoporal cells, then in the stomodeum, the midgut, and hindgut primordia, and in the cells of central and peripheral nervous system. Before the start of active feeding of nectochaetes, we observed a short phase of foxA expression in the entire digestive tract. After amputation of posterior segments, foxA expression was established de novo in the new terminal part of the intestine, and then in the developing hindgut and the anus. CONCLUSIONS: We discovered an early marker of endoderm formation previously unknown in errant annelids. Its expression dynamics provided valuable insights into the gut development. Comparative analysis of foxA activity suggests its primary role in gastrulation morphogenesis independently of its type and in midgut and foregut specification. Developmental Dynamics 248:728-743, 2019. © 2018 Wiley Periodicals, Inc.


Subject(s)
Intestines/growth & development , Polychaeta/metabolism , Receptors, Cell Surface/metabolism , Animals , Embryo, Nonmammalian , Endoderm/growth & development , Gene Expression Regulation, Developmental , Intestines/physiology , Larva , Life Cycle Stages , Morphogenesis , Polychaeta/growth & development , Polychaeta/physiology , Regeneration , Trans-Activators/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...