Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Toxins (Basel) ; 13(4)2021 04 10.
Article in English | MEDLINE | ID: mdl-33920096

ABSTRACT

Chronic kidney disease (CKD) affects more than 10% of the world population and leads to excess morbidity and mortality (with cardiovascular disease as a leading cause of death). Vascular calcification (VC) is a phenomenon of disseminated deposition of mineral content within the media layer of arteries preceded by phenotypic changes in vascular smooth muscle cells (VSMC) and/or accumulation of mineral content within the atherosclerotic lesions. Medial VC results in vascular stiffness and significantly contributes to increased cardio-vascular (CV) morbidity, whereas VC of plaques may rather increase their stability. Mineral and bone disorders of CKD (CKD-MBD) contribute to VC, which is further aggravated by accumulation of uremic toxins. Both CKD-MBD and uremic toxin accumulation affect not only patients with advanced CKD (glomerular filtration rate (GFR) less than 15 mL/min./1.72 m2, end-stage kidney disease) but also those on earlier stages of a disease. The key uremic toxins that contribute to VC, i.e., p-cresyl sulphate (PCS), indoxyl sulphate (IS) and trimethylamine-N-oxide (TMAO) originate from bacterial metabolism of gut microbiota. All mentioned toxins promote VC by several mechanisms, including: Transdifferentiation and apoptosis of VSMC, dysfunction of endothelial cells, oxidative stress, interaction with local renin-angiotensin-aldosterone system or miRNA profile modification. Several attractive methods of gut microbiota manipulations have been proposed in order to modify their metabolism and to limit vascular damage (and VC) triggered by uremic toxins. Unfortunately, to date no such method was demonstrated to be effective at the level of "hard" patient-oriented or even clinically relevant surrogate endpoints.


Subject(s)
Bacteria/metabolism , Blood Vessels/metabolism , Chronic Kidney Disease-Mineral and Bone Disorder/metabolism , Gastrointestinal Microbiome , Intestines/microbiology , Renal Insufficiency, Chronic/metabolism , Toxins, Biological/metabolism , Uremia/metabolism , Vascular Calcification/metabolism , Animals , Blood Vessels/pathology , Chronic Kidney Disease-Mineral and Bone Disorder/microbiology , Disease Progression , Humans , Prognosis , Renal Insufficiency, Chronic/microbiology , Uremia/microbiology , Vascular Calcification/microbiology , Vascular Calcification/pathology
2.
Nutrients ; 13(3)2021 Feb 27.
Article in English | MEDLINE | ID: mdl-33673618

ABSTRACT

Phosphorus is an essential nutrient that is critically important in the control of cell and tissue function and body homeostasis. Phosphorus excess may result in severe adverse medical consequences. The most apparent is an impact on cardiovascular (CV) disease, mainly through the ability of phosphate to change the phenotype of vascular smooth muscle cells and its contribution to pathologic vascular, valvular and other soft tissue calcification. Chronic kidney disease (CKD) is the most prevalent chronic disease manifesting with the persistent derangement of phosphate homeostasis. Diabetes and resulting diabetic kidney disease (DKD) remain the leading causes of CKD and end-stage kidney disease (ESRD) worldwide. Mineral and bone disorders of CKD (CKD-MBD), profound derangement of mineral metabolism, develop in the course of the disease and adversely impact on bone health and the CV system. In this review we aimed to discuss the data concerning CKD-MBD in patients with diabetes and to analyze the possible link between hyperphosphatemia, certain biomarkers of CKD-MBD and high dietary phosphate intake on prognosis in patients with diabetes and DKD. We also attempted to clarify if hyperphosphatemia and high phosphorus intake may impact the onset and progression of DKD. Careful analysis of the available literature brings us to the conclusion that, as for today, no clear recommendations based on the firm clinical data can be provided in terms of phosphorus intake aiming to prevent the incidence or progression of diabetic kidney disease.


Subject(s)
Chronic Kidney Disease-Mineral and Bone Disorder/blood , Diabetic Nephropathies/blood , Diabetic Nephropathies/metabolism , Phosphorus, Dietary/administration & dosage , Phosphorus/blood , Renal Insufficiency, Chronic/blood , Biomarkers/blood , Chronic Kidney Disease-Mineral and Bone Disorder/metabolism , Humans , Renal Insufficiency, Chronic/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL