Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Polymers (Basel) ; 14(24)2022 Dec 08.
Article in English | MEDLINE | ID: mdl-36559732

ABSTRACT

The possibility of using the microorganisms Pseudomonas sp. 7p-81, Pseudomonas putida BS394(pBS216), Rhodococcus erythropolis s67, Rhodococcus pyridinivorans 5Ap, Rhodococcus erythropolis X5, Rhodococcus pyridinivorans F5 and Pseudomonas veronii DSM 11331T as the basis of a biosensor for the phenol index to assess water environments was studied. The adaptation of microorganisms to phenol during growth was carried out to increase the selectivity of the analytical system. The most promising microorganisms for biosensor formation were the bacteria P. putida BS394(pBS216). Cells were immobilized in redox-active polymers based on bovine serum albumin modified by ferrocenecarboxaldehyde and based on a composite with a carbon nanotube to increase sensitivity. The rate constants of the interaction of the redox-active polymer and the composite based on it with the biomaterial were 193.8 and 502.8 dm3/(g·s) respectively. For the biosensor created using hydrogel bovine serum albumin-ferrocene-carbon nanotubes, the lower limit of the determined phenol concentrations was 1 × 10-3 mg/dm3, the sensitivity coefficient was (5.8 ± 0.2)∙10-3 µA·dm3/mg, Michaelis constant KM = 230 mg/dm3, the maximum rate of the enzymatic reaction Rmax = 217 µA and the long-term stability of the bioanalyzer was 11 days. As a result of approbation, it was found that the urban water phenol content differed insignificantly, measured by creating a biosensor and using the standard photometric method.

2.
Folia Microbiol (Praha) ; 64(1): 41-48, 2019 Jan.
Article in English | MEDLINE | ID: mdl-29951843

ABSTRACT

A thermotolerant bacterial strain 1D isolated from refinery oil-contaminated soil was identified as Gordonia sp. based on the analysis of 16S rRNA and gyrB gene sequences. The strain was found to utilize crude oil, diesel fuel, and a wide spectrum of alkanes at temperatures up to 50 °C. Strain 1D is the first representative of Gordonia amicalis capable of utilizing alkanes of chain length up to С36 at a temperature of 45-50 °C. The degree of crude oil degradation by Gordonia sp. 1D at 45 °C was 38% in liquid medium and 40% in soil (with regard to abiotic loss). There are no examples of so effective hydrocarbon-oxidizing thermotolerant Gordonia in the world literature. The 1D genome analysis revealed the presence of two alkane hydroxylase gene clusters, genes of dibenzothiophene cleavage, and the cleavage of salicylate and gentisate - naphthalene metabolism intermediates. The highly efficient thermotolerant strain Gordonia sp. 1D can be used in remediation of oil-contaminated soils in hot climates.


Subject(s)
Genome, Bacterial/genetics , Gordonia Bacterium/genetics , Gordonia Bacterium/metabolism , Petroleum/metabolism , Thermotolerance , Biodegradation, Environmental , Genes, Bacterial , Gordonia Bacterium/classification , Gordonia Bacterium/physiology , Multigene Family , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Soil Microbiology , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL