Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Bioorg Med Chem Lett ; 27(12): 2683-2688, 2017 06 15.
Article in English | MEDLINE | ID: mdl-28465103

ABSTRACT

Studies on human genetics have suggested that inhibitors of the Nav1.7 voltage-gated sodium channel hold considerable promise as therapies for the treatment of chronic pain syndromes. Herein, we report novel, peripherally-restricted benzoxazolinone aryl sulfonamides as potent Nav1.7 inhibitors with excellent selectivity against the Nav1.5 isoform, which is expressed in the heart muscle. Elaboration of initial lead compound 3d afforded exemplar 13, which featured attractive physicochemical properties, outstanding lipophilic ligand efficiency and pharmacological selectivity against Nav1.5 exceeding 1000-fold. Key structure-activity relationships associated with oral bioavailability were leveraged to discover compound 17, which exhibited a comparable potency/selectivity profile as well as full efficacy following oral administration in a preclinical model indicative of antinociceptive behavior.


Subject(s)
Analgesics/pharmacology , Benzoxazoles/pharmacology , NAV1.7 Voltage-Gated Sodium Channel/metabolism , Pain/drug therapy , Sulfonamides/pharmacology , Administration, Oral , Analgesics/administration & dosage , Analgesics/chemistry , Animals , Benzoxazoles/administration & dosage , Benzoxazoles/chemistry , Biological Availability , Disease Models, Animal , Dose-Response Relationship, Drug , Formaldehyde/administration & dosage , Humans , Mice , Molecular Structure , Myocytes, Smooth Muscle/drug effects , Myocytes, Smooth Muscle/metabolism , Pain/chemically induced , Rats , Structure-Activity Relationship , Sulfonamides/administration & dosage , Sulfonamides/chemistry
2.
SLAS Discov ; 22(8): 995-1006, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28426940

ABSTRACT

High-throughput screening (HTS) is a widespread method in early drug discovery for identifying promising chemical matter that modulates a target or phenotype of interest. Because HTS campaigns involve screening millions of compounds, it is often desirable to initiate screening with a subset of the full collection. Subsequently, virtual screening methods prioritize likely active compounds in the remaining collection in an iterative process. With this approach, orthogonal virtual screening methods are often applied, necessitating the prioritization of hits from different approaches. Here, we introduce a novel method of fusing these prioritizations and benchmark it prospectively on 17 screening campaigns using virtual screening methods in three descriptor spaces. We found that the fusion approach retrieves 15% to 65% more active chemical series than any single machine-learning method and that appropriately weighting contributions of similarity and machine-learning scoring techniques can increase enrichment by 1% to 19%. We also use fusion scoring to evaluate the tradeoff between screening more chemical matter initially in lieu of replicate samples to prevent false-positives and find that the former option leads to the retrieval of more active chemical series. These results represent guidelines that can increase the rate of identification of promising active compounds in future iterative screens.


Subject(s)
Drug Evaluation, Preclinical , Heuristics , User-Computer Interface , Machine Learning
3.
Bioorg Med Chem Lett ; 27(10): 2087-2093, 2017 05 15.
Article in English | MEDLINE | ID: mdl-28389149

ABSTRACT

The voltage-gated sodium channel Nav1.7 is a genetically validated target for the treatment of pain with gain-of-function mutations in man eliciting a variety of painful disorders and loss-of-function mutations affording insensitivity to pain. Unfortunately, drugs thought to garner efficacy via Nav1 inhibition have undesirable side effect profiles due to their lack of selectivity over channel isoforms. Herein we report the discovery of a novel series of orally bioavailable arylsulfonamide Nav1.7 inhibitors with high levels of selectivity over Nav1.5, the Nav isoform responsible for cardiovascular side effects, through judicious use of parallel medicinal chemistry and physicochemical property optimization. This effort produced inhibitors such as compound 5 with excellent potency, selectivity, behavioral efficacy in a rodent pain model, and efficacy in a mouse itch model suggestive of target modulation.


Subject(s)
Sulfonamides/chemistry , Voltage-Gated Sodium Channel Blockers/chemistry , Administration, Oral , Animals , Disease Models, Animal , Drug Evaluation, Preclinical , Half-Life , Inhibitory Concentration 50 , Mice , NAV1.7 Voltage-Gated Sodium Channel/chemistry , NAV1.7 Voltage-Gated Sodium Channel/metabolism , Nitrogen/chemistry , Pain/drug therapy , Protein Isoforms/antagonists & inhibitors , Protein Isoforms/metabolism , Rats , Structure-Activity Relationship , Sulfonamides/pharmacokinetics , Sulfonamides/therapeutic use , Voltage-Gated Sodium Channel Blockers/pharmacokinetics , Voltage-Gated Sodium Channel Blockers/therapeutic use
4.
Neuropharmacology ; 62(3): 1453-60, 2012 Mar.
Article in English | MEDLINE | ID: mdl-21112344

ABSTRACT

The glutamatergic hypofunction hypothesis of schizophrenia has led to the development of novel therapeutic strategies modulating NMDA receptor function. One of these strategies targets the activation of the metabotropic glutamate receptor 5 (mGlu5 receptor) using positive allosteric modulators (PAMs). Our goal was to evaluate the potential for repeated administration of the mGlu5 receptor PAM, CDPPB (3-cyano-N-(1,3-diphenyl-1H-pyrazol-5-yl)benzamide) (30 mg/kg) to induce tolerance to the anti-psychotic like effect using the amphetamine-induced hyperlocomotion rat model, and to produce receptor desensitization in mGlu5 receptor-enriched brain regions. CDPPB dose dependently reduced the locomotor response to amphetamine when administered acutely, and the same effect was observed following 7-day pre-treatment regime. In addition, 7-day dosing of CDPPB did not affect mGlu5 receptor density in the striatum, nor did it change mGlu5 receptor PAM-induced phosphorylation of NMDA, GluN1 and GluN2b, receptor subunits in striatum compared to the levels measured acutely. In contrast, in the frontal cortex, repeated administration of CDPPB decreased mGlu5 receptor density and resulted in a loss of its ability to increase GluN1 and GluN2b levels. Consistent with a reduction of cortical mGlu5 receptor density and phosphorylation, CDPPB (30 mg/kg) significantly affected sleep architecture as determined by cortical EEG at day one however by the seventh day of dosing all sleep changes were absent. Together these results suggest that the development of tolerance induced by the repeated treatment with the mGlu5 receptor PAM, CDPPB, may depend not only on the system being measured (sleep architecture vs psychostimulant induced hyperactivity), but also on the brain region involved with frontal cortex being a more susceptible region to receptor desensitization and internalization than striatum.


Subject(s)
Benzamides/administration & dosage , Cerebral Cortex/physiology , Corpus Striatum/physiology , Pyrazoles/administration & dosage , Receptors, Metabotropic Glutamate/physiology , Allosteric Regulation/drug effects , Animals , Cerebral Cortex/drug effects , Corpus Striatum/drug effects , Male , Psychomotor Agitation/physiopathology , Rats , Rats, Sprague-Dawley , Rats, Wistar , Receptor, Metabotropic Glutamate 5 , Sleep/drug effects
5.
J Neurochem ; 118(6): 1016-31, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21736568

ABSTRACT

The EphA4 receptor and its ephrin ligands are involved in astrocytic gliosis following CNS injury. Therefore, a strategy aimed at the blockade of EphA4 signaling could have broad therapeutic interest in brain disorders. We have identified novel small molecule inhibitors of EphA4 kinase in specific enzymatic and cell-based assays. In addition, we have demonstrated in two in vitro models of scratch injury that EphA4 receptor kinase is activated through phosphorylation and is involved in the repopulation of the wound after the scratch. A potent EphA4 kinase inhibitor significantly inhibited wound closure and reduced the accumulation of the reactive astrocytes inside the scratch. We have also shown that after the transient focal cerebral ischemia in rats, a large glial scar is formed by the accumulation of astrocytes and chondroitin sulfate proteoglycan surrounding the infarcted tissue at 7 days and 14 days of reperfusion. EphA4 protein expression is highly up-regulated in the same areas at these time points, supporting its potential role in the glial scar formation and maintenance. Taken together, these results suggest that EphA4 kinase inhibitors might interfere with the astrogliosis reaction and thereby lead to improved neurological outcome after ischemic injury.


Subject(s)
Gliosis/drug therapy , Protein Kinase Inhibitors/therapeutic use , Receptor, EphA4/antagonists & inhibitors , Wounds and Injuries/pathology , Animals , Astrocytes/pathology , Blotting, Western , CHO Cells , Cell Movement/drug effects , Cells, Cultured , Cricetinae , Cricetulus , Gliosis/pathology , Humans , Immunohistochemistry , Ischemic Attack, Transient/pathology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Microscopy, Fluorescence , Rats , Rats, Sprague-Dawley , Small Molecule Libraries , Wound Healing/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...