Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters










Publication year range
1.
J Am Chem Soc ; 145(2): 953-959, 2023 01 18.
Article in English | MEDLINE | ID: mdl-36584283

ABSTRACT

DNA interstrand cross-links (ICLs) prevent DNA replication and transcription and can lead to potentially lethal events, such as cancer or bone marrow failure. ICLs are typically repaired by proteins within the Fanconi Anemia (FA) pathway, although the details of the pathway are not fully established. Methods to generate DNA containing ICLs are key to furthering the understanding of DNA cross-link repair. A major route to ICL formation in vivo involves reaction of DNA with acetaldehyde, derived from ethanol metabolism. This reaction forms a three-carbon bridged ICL involving the amino groups of adjacent guanines in opposite strands of a duplex resulting in amino and imino functionalities. A stable reduced form of the ICL has applications in understanding the recognition and repair of these types of adducts. Previous routes to creating DNA duplexes containing these adducts have involved lengthy post-DNA synthesis chemistry followed by reduction of the imine. Here, an efficient and high-yielding approach to the reduced ICL using a novel N2-((R)-4-trifluoroacetamidobutan-2-yl)-2'-deoxyguanosine phosphoramidite is described. Following standard automated DNA synthesis and deprotection, the ICL is formed overnight in over 90% yield upon incubation at room temperature with a complementary oligodeoxyribonucleotide containing 2-fluoro-2'-deoxyinosine. The cross-linked duplex displayed a melting transition 25 °C higher than control sequences. Importantly, we show using the Xenopus egg extract system that an ICL synthesized by this method is repaired by the FA pathway. The simplicity and efficiency of this methodology for preparing reduced acetaldehyde ICLs will facilitate access to these DNA architectures for future studies on cross-link repair.


Subject(s)
Acetaldehyde , DNA , Cross-Linking Reagents , DNA/metabolism , DNA Replication , DNA Repair , DNA Damage
2.
Biochemistry ; 57(50): 6838-6847, 2018 12 18.
Article in English | MEDLINE | ID: mdl-30472848

ABSTRACT

Flap endonuclease 1 (FEN1) is a structure-selective nuclease best known for its roles in the penultimate steps of Okazaki fragment maturation, long-patch base excision repair and ribonucleotide excision repair. To better understand the role of FEN1 in genome maintenance in yeast and mammals, FEN1 active site mutations (A159V and E160D) have been used as tools to dissect its involvement in DNA metabolic pathways. However, discrepancies concerning the biochemistry and molecular etiology of genomic instability when FEN1 function is altered exist. Here, a detailed biochemical and biophysical characterization of mouse FEN1 and mutants is presented. Kinetic measurements showed that the active site mutants A159V and E160D reduce the rates of hydrolysis under multiple- and single-turnover conditions on all substrates. Consistent with their dominant negative effects in heterozygotes, neither mutation affects the adoption of the substrate duplex arms in the bent conformation on the enzyme surface, although decreases in substrate binding affinity are observed. The ability of the mutants to induce the requisite local DNA conformational change near the scissile phosphate is adversely affected, suggesting that the ability to place the scissile phosphate optimally in the active site causes the reduction in rates of phosphate diester hydrolysis. Further analysis suggests that the A159V mutation causes the chemistry of phosphate diester hydrolysis to become rate-limiting, whereas the wild-type and E160D proteins are likely rate-limited by a conformational change. On the basis of these results, the proposed roles of FEN1 in genome maintenance derived from studies involving these mutations are reassessed.


Subject(s)
Flap Endonucleases/chemistry , Flap Endonucleases/genetics , Amino Acid Substitution , Animals , Catalytic Domain/genetics , DNA/chemistry , DNA/metabolism , Flap Endonucleases/metabolism , Fluorescence Resonance Energy Transfer , Genomic Instability , Kinetics , Mice , Models, Molecular , Mutagenesis, Site-Directed , Nucleic Acid Conformation , Substrate Specificity
3.
Nucleic Acids Res ; 46(11): 5618-5633, 2018 06 20.
Article in English | MEDLINE | ID: mdl-29718417

ABSTRACT

Human flap endonuclease-1 (hFEN1) catalyzes the divalent metal ion-dependent removal of single-stranded DNA protrusions known as flaps during DNA replication and repair. Substrate selectivity involves passage of the 5'-terminus/flap through the arch and recognition of a single nucleotide 3'-flap by the α2-α3 loop. Using NMR spectroscopy, we show that the solution conformation of free and DNA-bound hFEN1 are consistent with crystal structures; however, parts of the arch region and α2-α3 loop are disordered without substrate. Disorder within the arch explains how 5'-flaps can pass under it. NMR and single-molecule FRET data show a shift in the conformational ensemble in the arch and loop region upon addition of DNA. Furthermore, the addition of divalent metal ions to the active site of the hFEN1-DNA substrate complex demonstrates that active site changes are propagated via DNA-mediated allostery to regions key to substrate differentiation. The hFEN1-DNA complex also shows evidence of millisecond timescale motions in the arch region that may be required for DNA to enter the active site. Thus, hFEN1 regional conformational flexibility spanning a range of dynamic timescales is crucial to reach the catalytically relevant ensemble.


Subject(s)
Flap Endonucleases/chemistry , Catalytic Domain , Cations, Divalent/chemistry , DNA/chemistry , DNA/metabolism , Flap Endonucleases/metabolism , Fluorescence Resonance Energy Transfer , Humans , Models, Molecular , Nuclear Magnetic Resonance, Biomolecular , Phosphates/chemistry , Protein Conformation , Protein Structure, Secondary , Substrate Specificity
4.
Biochemistry ; 56(29): 3704-3707, 2017 07 25.
Article in English | MEDLINE | ID: mdl-28682061

ABSTRACT

Human exonuclease 1 (hEXO1) is a member of the 5'-nuclease superfamily and plays important roles in DNA repair. Along with acting as a 5'-exonuclease on blunt, gapped, nicked, and 3'-overhang DNAs, hEXO1 can also act as an endonuclease removing protruding 5'-single-stranded flaps from duplex ends. How hEXO1 and related 5'-nuclease human flap endonuclease 1 (hFEN1) are specific for discontinuous DNA substrates like 5'-flaps has been controversial. Here we report the first functional data that imply that hEXO1 threads the 5'-flap through a hole in the protein known as the helical arch, thereby excluding reactions of continuous single strands. Conjugation of bulky 5'-streptavidin that would "block" threading through the arch drastically slowed the hEXO1 reaction. In contrast, addition of streptavidin to a preformed hEXO1 5'-biotin flap DNA complex trapped a portion of the substrate in a highly reactive threaded conformation. However, another fraction behaves as if it were "blocked" and decayed very slowly, implying there were both threaded and unthreaded forms of the substrate present. The reaction of an unmodified hEXO1-flap DNA complex did not exhibit marked biphasic kinetics, suggesting a fast re-equilibration occurs that produces more threaded substrate when some decays. The finding that a threading mechanism like that used by hFEN1 is also used by hEXO1 unifies the mode of operation for members of the 5'-nuclease superfamily that act on discontinuous substrates. As with hFEN1, intrinsic disorder of the arch region of the protein may explain how flaps can be threaded without a need for a coupled energy source.


Subject(s)
DNA Repair Enzymes/chemistry , DNA Repair , DNA/chemistry , Exodeoxyribonucleases/chemistry , Models, Chemical , Flap Endonucleases/chemistry , Humans , Kinetics , Protein Structure, Secondary
5.
Nat Commun ; 8: 15855, 2017 06 27.
Article in English | MEDLINE | ID: mdl-28653660

ABSTRACT

DNA replication and repair enzyme Flap Endonuclease 1 (FEN1) is vital for genome integrity, and FEN1 mutations arise in multiple cancers. FEN1 precisely cleaves single-stranded (ss) 5'-flaps one nucleotide into duplex (ds) DNA. Yet, how FEN1 selects for but does not incise the ss 5'-flap was enigmatic. Here we combine crystallographic, biochemical and genetic analyses to show that two dsDNA binding sites set the 5'polarity and to reveal unexpected control of the DNA phosphodiester backbone by electrostatic interactions. Via 'phosphate steering', basic residues energetically steer an inverted ss 5'-flap through a gateway over FEN1's active site and shift dsDNA for catalysis. Mutations of these residues cause an 18,000-fold reduction in catalytic rate in vitro and large-scale trinucleotide (GAA)n repeat expansions in vivo, implying failed phosphate-steering promotes an unanticipated lagging-strand template-switch mechanism during replication. Thus, phosphate steering is an unappreciated FEN1 function that enforces 5'-flap specificity and catalysis, preventing genomic instability.


Subject(s)
DNA/genetics , Flap Endonucleases/metabolism , Genomic Instability , Phosphates/metabolism , Amino Acid Sequence , Binding Sites , Catalytic Domain , DNA/chemistry , DNA/metabolism , DNA Repair , DNA Replication , Flap Endonucleases/chemistry , Flap Endonucleases/genetics , Humans , Mutation , Phosphates/chemistry , Sequence Alignment , Substrate Specificity
7.
Nat Chem Biol ; 12(10): 815-21, 2016 10.
Article in English | MEDLINE | ID: mdl-27526030

ABSTRACT

The structure-specific nuclease human flap endonuclease-1 (hFEN1) plays a key role in DNA replication and repair and may be of interest as an oncology target. We present the crystal structure of inhibitor-bound hFEN1, which shows a cyclic N-hydroxyurea bound in the active site coordinated to two magnesium ions. Three such compounds had similar IC50 values but differed subtly in mode of action. One had comparable affinity for protein and protein-substrate complex and prevented reaction by binding to active site catalytic metal ions, blocking the necessary unpairing of substrate DNA. Other compounds were more competitive with substrate. Cellular thermal shift data showed that both inhibitor types engaged with hFEN1 in cells, and activation of the DNA damage response was evident upon treatment with inhibitors. However, cellular EC50 values were significantly higher than in vitro inhibition constants, and the implications of this for exploitation of hFEN1 as a drug target are discussed.


Subject(s)
Enzyme Inhibitors/pharmacology , Flap Endonucleases/antagonists & inhibitors , Flap Endonucleases/metabolism , Catalytic Domain/drug effects , Cell Line, Tumor , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemistry , Flap Endonucleases/chemistry , Humans , Models, Molecular , Molecular Structure , Structure-Activity Relationship , Temperature
8.
J Biol Chem ; 291(15): 8258-68, 2016 Apr 08.
Article in English | MEDLINE | ID: mdl-26884332

ABSTRACT

Human flap endonuclease-1 (hFEN1) catalyzes the essential removal of single-stranded flaps arising at DNA junctions during replication and repair processes. hFEN1 biological function must be precisely controlled, and consequently, the protein relies on a combination of protein and substrate conformational changes as a prerequisite for reaction. These include substrate bending at the duplex-duplex junction and transfer of unpaired reacting duplex end into the active site. When present, 5'-flaps are thought to thread under the helical cap, limiting reaction to flaps with free 5'-terminiin vivo Here we monitored DNA bending by FRET and DNA unpairing using 2-aminopurine exciton pair CD to determine the DNA and protein requirements for these substrate conformational changes. Binding of DNA to hFEN1 in a bent conformation occurred independently of 5'-flap accommodation and did not require active site metal ions or the presence of conserved active site residues. More stringent requirements exist for transfer of the substrate to the active site. Placement of the scissile phosphate diester in the active site required the presence of divalent metal ions, a free 5'-flap (if present), a Watson-Crick base pair at the terminus of the reacting duplex, and the intact secondary structure of the enzyme helical cap. Optimal positioning of the scissile phosphate additionally required active site conserved residues Tyr(40), Asp(181), and Arg(100)and a reacting duplex 5'-phosphate. These studies suggest a FEN1 reaction mechanism where junctions are bound and 5'-flaps are threaded (when present), and finally the substrate is transferred onto active site metals initiating cleavage.


Subject(s)
DNA/metabolism , Flap Endonucleases/metabolism , Circular Dichroism , DNA/chemistry , DNA Repair , Fluorescence Resonance Energy Transfer , Humans , Nucleic Acid Conformation , Substrate Specificity
9.
J Biol Chem ; 288(47): 34239-34248, 2013 Nov 22.
Article in English | MEDLINE | ID: mdl-24126913

ABSTRACT

The prototypical 5'-nuclease, flap endonuclease-1 (FEN1), catalyzes the essential removal of single-stranded flaps during DNA replication and repair. FEN1 hydrolyzes a specific phosphodiester bond one nucleotide into double-stranded DNA. This specificity arises from double nucleotide unpairing that places the scissile phosphate diester on active site divalent metal ions. Also related to FEN1 specificity is the helical arch, through which 5'-flaps, but not continuous DNAs, can thread. The arch contains basic residues (Lys-93 and Arg-100 in human FEN1 (hFEN1)) that are conserved by all 5'-nucleases and a cap region only present in enzymes that process DNAs with 5' termini. Proline mutations (L97P, L111P, L130P) were introduced into the hFEN1 helical arch. Each mutation was severely detrimental to reaction. However, all proteins were at least as stable as wild-type (WT) hFEN1 and bound substrate with comparable affinity. Moreover, all mutants produced complexes with 5'-biotinylated substrate that, when captured with streptavidin, were resistant to challenge with competitor DNA. Removal of both conserved basic residues (K93A/R100A) was no more detrimental to reaction than the single mutation R100A, but much less severe than L97P. The ability of protein-Ca(2+) to rearrange 2-aminopurine-containing substrates was monitored by low energy CD. Although L97P and K93A/R100A retained the ability to unpair substrates, the cap mutants L111P and L130P did not. Taken together, these data challenge current assumptions related to 5'-nuclease family mechanism. Conserved basic amino acids are not required for double nucleotide unpairing and appear to act cooperatively, whereas the helical cap plays an unexpected role in hFEN1-substrate rearrangement.


Subject(s)
Calcium/chemistry , DNA/chemistry , Flap Endonucleases/chemistry , Amino Acid Substitution , Calcium/metabolism , DNA/genetics , DNA/metabolism , Flap Endonucleases/genetics , Flap Endonucleases/metabolism , Humans , Mutagenesis, Site-Directed , Mutation, Missense , Proline , Protein Structure, Secondary
10.
Nucleic Acids Res ; 41(21): 9839-47, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23975198

ABSTRACT

The structure- and strand-specific phosphodiesterase flap endonuclease-1 (FEN1), the prototypical 5'-nuclease, catalyzes the essential removal of 5'-single-stranded flaps during replication and repair. FEN1 achieves this by selectively catalyzing hydrolysis one nucleotide into the duplex region of substrates, always targeting the 5'-strand. This specificity is proposed to arise by unpairing the 5'-end of duplex to permit the scissile phosphate diester to contact catalytic divalent metal ions. Providing the first direct evidence for this, we detected changes induced by human FEN1 (hFEN1) in the low-energy CD spectra and fluorescence lifetimes of 2-aminopurine in substrates and products that were indicative of unpairing. Divalent metal ions were essential for unpairing. However, although 5'-nuclease superfamily-conserved active-site residues K93 and R100 were required to produce unpaired product, they were not necessary to unpair substrates. Nevertheless, a unique arrangement of protein residues around the unpaired DNA was detected only with wild-type protein, suggesting a cooperative assembly of active-site residues that may be triggered by unpaired DNA. The general principles of FEN1 strand and reaction-site selection, which depend on the ability of juxtaposed divalent metal ions to unpair the end of duplex DNA, may also apply more widely to other structure- and strand-specific nucleases.


Subject(s)
DNA/metabolism , Flap Endonucleases/chemistry , 2-Aminopurine/chemistry , Catalytic Domain , DNA/chemistry , Flap Endonucleases/genetics , Flap Endonucleases/metabolism , Humans , Models, Molecular , Mutation , Nucleic Acid Conformation
11.
Subcell Biochem ; 62: 301-26, 2012.
Article in English | MEDLINE | ID: mdl-22918592

ABSTRACT

Processing of Okazaki fragments to complete lagging strand DNA synthesis requires coordination among several proteins. RNA primers and DNA synthesised by DNA polymerase α are displaced by DNA polymerase δ to create bifurcated nucleic acid structures known as 5'-flaps. These 5'-flaps are removed by Flap Endonuclease 1 (FEN), a structure-specific nuclease whose divalent metal ion-dependent phosphodiesterase activity cleaves 5'-flaps with exquisite specificity. FENs are paradigms for the 5' nuclease superfamily, whose members perform a wide variety of roles in nucleic acid metabolism using a similar nuclease core domain that displays common biochemical properties and structural features. A detailed review of FEN structure is undertaken to show how DNA substrate recognition occurs and how FEN achieves cleavage at a single phosphate diester. A proposed double nucleotide unpairing trap (DoNUT) is discussed with regards to FEN and has relevance to the wider 5' nuclease superfamily. The homotrimeric proliferating cell nuclear antigen protein (PCNA) coordinates the actions of DNA polymerase, FEN and DNA ligase by facilitating the hand-off intermediates between each protein during Okazaki fragment maturation to maximise through-put and minimise consequences of intermediates being released into the wider cellular environment. FEN has numerous partner proteins that modulate and control its action during DNA replication and is also controlled by several post-translational modification events, all acting in concert to maintain precise and appropriate cleavage of Okazaki fragment intermediates during DNA replication.


Subject(s)
DNA Replication/physiology , DNA/biosynthesis , DNA/chemistry , Flap Endonucleases/chemistry , Flap Endonucleases/metabolism , Animals , DNA/genetics , DNA/metabolism , DNA Ligases/chemistry , DNA Ligases/genetics , DNA Ligases/metabolism , DNA Polymerase III/chemistry , DNA Polymerase III/genetics , DNA Polymerase III/metabolism , Flap Endonucleases/genetics , Humans , Proliferating Cell Nuclear Antigen/chemistry , Proliferating Cell Nuclear Antigen/genetics , Proliferating Cell Nuclear Antigen/metabolism , Structure-Activity Relationship
12.
Chem Commun (Camb) ; 48(71): 8895-7, 2012 Sep 14.
Article in English | MEDLINE | ID: mdl-22850542

ABSTRACT

Flap endonucleases (FENs) are proposed to select their target phosphate diester by unpairing the two terminal nucleotides of duplex. Interstrand disulfide crosslinks, introduced by oxidation of thiouracil and thioguanine bases, abolished the specificity of human FEN1 for hydrolysis one nucleotide into the 5'-duplex.


Subject(s)
DNA/metabolism , Flap Endonucleases/metabolism , Thioguanine/metabolism , Thiouracil/metabolism , Disulfides/chemistry , Humans , Hydrolysis , Oxidation-Reduction , Substrate Specificity , Thioguanine/chemistry , Thiouracil/chemistry
13.
Nucleic Acids Res ; 40(10): 4507-19, 2012 May.
Article in English | MEDLINE | ID: mdl-22319208

ABSTRACT

Flap endonucleases (FENs), essential for DNA replication and repair, recognize and remove RNA or DNA 5'-flaps. Related to FEN specificity for substrates with free 5'-ends, but controversial, is the role of the helical arch observed in varying conformations in substrate-free FEN structures. Conflicting models suggest either 5'-flaps thread through the arch, which when structured can only accommodate single-stranded (ss) DNA, or the arch acts as a clamp. Here we show that free 5'-termini are selected using a disorder-thread-order mechanism. Adding short duplexes to 5'-flaps or 3'-streptavidin does not markedly impair the FEN reaction. In contrast, reactions of 5'-streptavidin substrates are drastically slowed. However, when added to premixed FEN and 5'-biotinylated substrate, streptavidin is not inhibitory and complexes persist after challenge with unlabelled competitor substrate, regardless of flap length or the presence of a short duplex. Cross-linked flap duplexes that cannot thread through the structured arch react at modestly reduced rate, ruling out mechanisms involving resolution of secondary structure. Combined results explain how FEN avoids cutting template DNA between Okazaki fragments and link local FEN folding to catalysis and specificity: the arch is disordered when flaps are threaded to confer specificity for free 5'-ends, with subsequent ordering of the arch to catalyze hydrolysis.


Subject(s)
DNA/chemistry , Flap Endonucleases/chemistry , Amino Acid Sequence , Biocatalysis , DNA/metabolism , Flap Endonucleases/metabolism , Humans , Models, Molecular , Molecular Sequence Data , Nucleic Acid Conformation , Streptavidin/metabolism , Substrate Specificity
14.
Trends Biochem Sci ; 37(2): 74-84, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22118811

ABSTRACT

Structure-specific 5'-nucleases form a superfamily of evolutionarily conserved phosphodiesterases that catalyse a precise incision of a diverse range of DNA and RNA substrates in a sequence-independent manner. Superfamily members, such as flap endonucleases, exonuclease 1, DNA repair protein XPG, endonuclease GEN1 and the 5'-3'-exoribonucleases, play key roles in many cellular processes such as DNA replication and repair, recombination, transcription, RNA turnover and RNA interference. In this review, we discuss recent results that highlight the conserved architectures and active sites of the structure-specific 5'-nucleases. Despite substrate diversity, a common gating mechanism for sequence-independent substrate recognition and incision emerges, whereby double nucleotide unpairing of substrates is required to access the active site.


Subject(s)
Flap Endonucleases/chemistry , Amino Acid Sequence , Animals , Catalytic Domain , DNA/chemistry , DNA/metabolism , DNA Repair , Endonucleases/chemistry , Endonucleases/metabolism , Exodeoxyribonucleases/chemistry , Exodeoxyribonucleases/metabolism , Flap Endonucleases/metabolism , Humans , Molecular Sequence Data , Protein Conformation , RNA Interference , Substrate Specificity
15.
Cell Cycle ; 10(12): 1998-2007, 2011 Jun 15.
Article in English | MEDLINE | ID: mdl-21558802

ABSTRACT

XPG is a structure-specific endonuclease required for nucleotide excision repair (NER). XPG incision defects result in the cancer-prone syndrome xeroderma pigmentosum, whereas truncating mutations of XPG cause the severe postnatal progeroid developmental disorder Cockayne syndrome. We show that XPG interacts directly with WRN protein, which is defective in the premature aging disorder Werner syndrome, and that the two proteins undergo similar subnuclear redistribution in S phase and colocalize in nuclear foci. The co-localization was observed in mid- to late S phase, when WRN moves from nucleoli to nuclear foci that have been shown to contain both protein markers of stalled replication forks and telomeric proteins. We mapped the interaction between XPG and WRN to the C-terminal domains of each, and show that interaction with the C-terminal domain of XPG strongly stimulates WRN helicase activity. WRN also possesses a competing DNA single-strand annealing activity that, combined with unwinding, has been shown to coordinate regression of model replication forks to form Holliday junction/chicken foot intermediate structures. We tested whether XPG stimulated WRN annealing activity, and found that XPG itself has intrinsic strand annealing activity that requires the unstructured R- and C-terminal domains but not the conserved catalytic core or endonuclease activity. Annealing by XPG is cooperative, rather than additive, with WRN annealing. Taken together, our results suggest a novel function for XPG in S phase that is, at least in part, performed coordinately with WRN, and which may contribute to the severity of the phenotypes that occur upon loss of XPG.


Subject(s)
DNA-Binding Proteins/metabolism , Endonucleases/metabolism , Exodeoxyribonucleases/metabolism , Nuclear Proteins/metabolism , RecQ Helicases/metabolism , Transcription Factors/metabolism , Werner Syndrome/enzymology , Binding Sites , DNA Helicases , DNA Repair , DNA Replication , DNA-Binding Proteins/physiology , Endonucleases/physiology , Exodeoxyribonucleases/physiology , Humans , Nuclear Proteins/physiology , Protein Binding , RecQ Helicases/physiology , S Phase , Transcription Factors/physiology , Werner Syndrome Helicase , Xeroderma Pigmentosum
16.
Cell ; 145(2): 198-211, 2011 Apr 15.
Article in English | MEDLINE | ID: mdl-21496641

ABSTRACT

Flap endonuclease (FEN1), essential for DNA replication and repair, removes RNA and DNA 5' flaps. FEN1 5' nuclease superfamily members acting in nucleotide excision repair (XPG), mismatch repair (EXO1), and homologous recombination (GEN1) paradoxically incise structurally distinct bubbles, ends, or Holliday junctions, respectively. Here, structural and functional analyses of human FEN1:DNA complexes show structure-specific, sequence-independent recognition for nicked dsDNA bent 100° with unpaired 3' and 5' flaps. Above the active site, a helical cap over a gateway formed by two helices enforces ssDNA threading and specificity for free 5' ends. Crystallographic analyses of product and substrate complexes reveal that dsDNA binding and bending, the ssDNA gateway, and double-base unpairing flanking the scissile phosphate control precise flap incision by the two-metal-ion active site. Superfamily conserved motifs bind and open dsDNA; direct the target region into the helical gateway, permitting only nonbase-paired oligonucleotides active site access; and support a unified understanding of superfamily substrate specificity.


Subject(s)
Flap Endonucleases/chemistry , Flap Endonucleases/metabolism , Amino Acid Sequence , Catalytic Domain , DNA/metabolism , DNA Mutational Analysis , Exodeoxyribonucleases/chemistry , Exodeoxyribonucleases/metabolism , Humans , Models, Molecular , Molecular Sequence Data , Sequence Alignment , Substrate Specificity
17.
Nucleic Acids Res ; 39(3): 781-94, 2011 Feb.
Article in English | MEDLINE | ID: mdl-20929870

ABSTRACT

Flap endonuclease-1 (FEN1) is a member of the Rad2 structure-specific nuclease family. FEN1 possesses FEN, 5'-exonuclease and gap-endonuclease activities. The multiple nuclease activities of FEN1 allow it to participate in numerous DNA metabolic pathways, including Okazaki fragment maturation, stalled replication fork rescue, telomere maintenance, long-patch base excision repair and apoptotic DNA fragmentation. Here, we summarize the distinct roles of the different nuclease activities of FEN1 in these pathways. Recent biochemical and genetic studies indicate that FEN1 interacts with more than 30 proteins and undergoes post-translational modifications. We discuss how FEN1 is regulated via these mechanisms. Moreover, FEN1 interacts with five distinct groups of DNA metabolic proteins, allowing the nuclease to be recruited to a specific DNA metabolic complex, such as the DNA replication machinery for RNA primer removal or the DNA degradosome for apoptotic DNA fragmentation. Some FEN1 interaction partners also stimulate FEN1 nuclease activities to further ensure efficient action in processing of different DNA structures. Post-translational modifications, on the other hand, may be critical to regulate protein-protein interactions and cellular localizations of FEN1. Lastly, we also review the biological significance of FEN1 as a tumor suppressor, with an emphasis on studies of human mutations and mouse models.


Subject(s)
Flap Endonucleases/genetics , Flap Endonucleases/physiology , Neoplasms/genetics , Animals , Flap Endonucleases/metabolism , Humans , Mice
18.
J Biol Chem ; 284(33): 22184-22194, 2009 Aug 14.
Article in English | MEDLINE | ID: mdl-19525235

ABSTRACT

Flap endonuclease 1 (FEN1) proteins, which are present in all kingdoms of life, catalyze the sequence-independent hydrolysis of the bifurcated nucleic acid intermediates formed during DNA replication and repair. How FEN1s have evolved to preferentially cleave flap structures is of great interest especially in light of studies wherein mice carrying a catalytically deficient FEN1 were predisposed to cancer. Structural studies of FEN1s from phage to human have shown that, although they share similar folds, the FEN1s of higher organisms contain a 3'-extrahelical nucleotide (3'-flap) binding pocket. When presented with 5'-flap substrates having a 3'-flap, archaeal and eukaryotic FEN1s display enhanced reaction rates and cleavage site specificity. To investigate the role of this interaction, a kinetic study of human FEN1 (hFEN1) employing well defined DNA substrates was conducted. The presence of a 3'-flap on substrates reduced Km and increased multiple- and single turnover rates of endonucleolytic hydrolysis at near physiological salt concentrations. Exonucleolytic and fork-gap-endonucleolytic reactions were also stimulated by the presence of a 3'-flap, and the absence of a 3'-flap from a 5'-flap substrate was more detrimental to hFEN1 activity than removal of the 5'-flap or introduction of a hairpin into the 5'-flap structure. hFEN1 reactions were predominantly rate-limited by product release regardless of the presence or absence of a 3'-flap. Furthermore, the identity of the stable enzyme product species was deduced from inhibition studies to be the 5'-phosphorylated product. Together the results indicate that the presence of a 3'-flap is the critical feature for efficient hFEN1 substrate recognition and catalysis.


Subject(s)
Flap Endonucleases/chemistry , Flap Endonucleases/genetics , Base Sequence , Catalysis , Flap Endonucleases/physiology , Humans , Hydrolysis , Kinetics , Molecular Sequence Data , Nucleic Acid Conformation , Phosphorylation , Potassium Chloride/chemistry , Protein Binding , Protein Structure, Secondary , Substrate Specificity , Thermodynamics
19.
J Mol Biol ; 377(3): 679-90, 2008 Mar 28.
Article in English | MEDLINE | ID: mdl-18291413

ABSTRACT

Flap endonuclease-1 (FEN-1) is a multifunctional and structure-specific nuclease that plays a critical role in maintaining human genome stability through RNA primer removal, long-patch base excision repair, resolution of DNA secondary structures and stalled DNA replication forks, and apoptotic DNA fragmentation. How FEN-1 is involved in multiple pathways, of which some are seemingly contradictory, is of considerable interest. To date, at least 20 proteins are known to interact with FEN-1; some form distinct complexes that affect one or more FEN-1 activities presumably to direct FEN-1 to a particular DNA metabolic pathway. FEN-1 consists of a nuclease core domain and a C-terminal extension. While the core domain harbors the nuclease activity, the C-terminal extension may be important for protein-protein interactions. Here, we have truncated or mutated the C-terminus of FEN-1 to identify amino acid residues that are critical for interaction with five proteins representing roles in different DNA replication and repair pathways. We found with all five proteins that the C-terminus is important for binding and that each protein uses a subset of amino acid residues. Replacement of one or more residues with an alanine in many cases leads to the complete loss of interaction, which may consequently lead to severe biological defects in mammals.


Subject(s)
DNA Repair , DNA Replication , Flap Endonucleases/chemistry , Models, Molecular , Amino Acid Sequence , Binding Sites , Cell Cycle Proteins/chemistry , DNA Damage , DNA-(Apurinic or Apyrimidinic Site) Lyase/chemistry , Endodeoxyribonucleases/chemistry , Exodeoxyribonucleases/chemistry , Exonucleases/chemistry , Flap Endonucleases/genetics , Humans , Molecular Sequence Data , Mutation , Protein Binding , Protein Interaction Domains and Motifs , Protein Interaction Mapping , RecQ Helicases/chemistry , Werner Syndrome Helicase
20.
Nucleic Acids Res ; 34(6): 1772-84, 2006.
Article in English | MEDLINE | ID: mdl-16582103

ABSTRACT

Flap endonuclease-1 (FEN-1) is a structure-specific nuclease best known for its involvement in RNA primer removal and long-patch base excision repair. This enzyme is known to possess 5'-flap endo- (FEN) and 5'-3' exo- (EXO) nuclease activities. Recently, FEN-1 has been reported to also possess a gap endonuclease (GEN) activity, which is possibly involved in apoptotic DNA fragmentation and the resolution of stalled DNA replication forks. In the current study, we compare the kinetics of these activities to shed light on the aspects of DNA structure and FEN-1 DNA-binding elements that affect substrate cleavage. By using DNA binding deficient mutants of FEN-1, we determine that the GEN activity is analogous to FEN activity in that the single-stranded DNA region of DNA substrates interacts with the clamp region of FEN-1. In addition, we show that the C-terminal extension of human FEN-1 likely interacts with the downstream duplex portion of all substrates. Taken together, a substrate-binding model that explains how FEN-1, which has a single active center, can have seemingly different activities is proposed. Furthermore, based on the evidence that GEN activity in complex with WRN protein cleaves hairpin and internal loop substrates, we suggest that the GEN activity may prevent repeat expansions and duplication mutations.


Subject(s)
Flap Endonucleases/chemistry , Flap Endonucleases/metabolism , Amino Acid Sequence , Binding Sites , DNA/chemistry , DNA/metabolism , DNA Helicases/metabolism , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Exodeoxyribonucleases/metabolism , Flap Endonucleases/genetics , Humans , Kinetics , Models, Molecular , Molecular Sequence Data , Mutagenesis, Site-Directed , Mutation , Nucleic Acid Conformation , Protein Binding , RecQ Helicases , Substrate Specificity , Werner Syndrome Helicase
SELECTION OF CITATIONS
SEARCH DETAIL
...