Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Biochemistry ; 63(13): 1621-1635, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38607680

ABSTRACT

Polyethylene glycol (PEG) is a flexible, nontoxic polymer commonly used in biological and medical research, and it is generally regarded as biologically inert. PEG molecules of variable sizes are also used as crowding agents to mimic intracellular environments. A recent study with PEG crowders revealed decreased catalytic activity of Escherichia coli prolyl-tRNA synthetase (Ec ProRS), where the smaller molecular weight PEGs had the maximum impact. The molecular mechanism of the crowding effects of PEGs is not clearly understood. PEG may impact protein conformation and dynamics, thus its function. In the present study, the effects of PEG molecules of various molecular weights and concentrations on the conformation and dynamics of Ec ProRS were investigated using a combined experimental and computational approach including intrinsic tryptophan fluorescence spectroscopy, atomic force microscopy, and atomistic molecular dynamic simulations. Results of the present study suggest that lower molecular weight PEGs in the dilute regime have modest effects on the conformational dynamics of Ec ProRS but impact the catalytic function primarily via the excluded volume effect; they form large clusters blocking the active site pocket. In contrast, the larger molecular weight PEGs in dilute to semidilute regimes have a significant impact on the protein's conformational dynamics; they wrap on the protein surface through noncovalent interactions. Thus, lower-molecular-weight PEG molecules impact protein dynamics and function via crowding effects, whereas larger PEGs induce confinement effects. These results have implications for the development of inhibitors for protein targets in a crowded cellular environment.


Subject(s)
Amino Acyl-tRNA Synthetases , Escherichia coli , Molecular Dynamics Simulation , Polyethylene Glycols , Protein Conformation , Polyethylene Glycols/chemistry , Escherichia coli/enzymology , Escherichia coli/metabolism , Amino Acyl-tRNA Synthetases/chemistry , Amino Acyl-tRNA Synthetases/metabolism , Amino Acyl-tRNA Synthetases/antagonists & inhibitors , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/metabolism , Microscopy, Atomic Force , Catalytic Domain , Molecular Weight
2.
ACS Omega ; 8(47): 44820-44830, 2023 Nov 28.
Article in English | MEDLINE | ID: mdl-38046287

ABSTRACT

Intrinsic tryptophan fluorescence spectroscopy is an important tool for examining the effects of molecular crowding and confinement on the structure, dynamics, and function of proteins. Synthetic crowders such as dextran, ficoll, polyethylene glycols, polyvinylpyrrolidone, and their respective monomers are used to mimic crowded intracellular environments. Interactions of these synthetic crowders with tryptophan and the subsequent impact on its fluorescence properties are therefore critically important for understanding the possible interference created by these crowders. In the present study, the effects of polymer and monomer crowders on tryptophan fluorescence were assessed by using experimental and computational approaches. The results of this study demonstrated that both polymer and monomer crowders have an impact on the tryptophan fluorescence intensity; however, the molecular mechanisms of quenching were different. Using Stern-Volmer plots and a temperature variation study, a physical basis for the quenching mechanism of commonly used synthetic crowders was established. The quenching of free tryptophan was found to involve static, dynamic, and sphere-of-action mechanisms. In parallel, computational studies employing Kohn-Sham density functional theory provided a deeper insight into the effects of intermolecular interactions and solvation, resulting in differing quenching modes for these crowders. Taken together, the study offers new physical insights into the quenching mechanisms of some commonly used monomer and polymer synthetic crowders.

3.
ACS Omega ; 8(15): 14208-14218, 2023 Apr 18.
Article in English | MEDLINE | ID: mdl-37180871

ABSTRACT

Polyethylene glycol (PEG) is a polyether compound commonly used in biological research and medicine because it is biologically inert. This simple polymer exists in variable chain lengths (and molecular weights). As they are devoid of any contiguous π-system, PEGs are expected to lack fluorescence properties. However, recent studies suggested the occurrence of fluorescence properties in non-traditional fluorophores like PEGs. Herein, a thorough investigation has been conducted to explore if PEG 20k fluoresces. Results of this combined experimental and computational study suggested that although PEG 20k could exhibit "through-space" delocalization of lone pairs of electrons in aggregates/clusters, formed via intermolecular and intramolecular interactions, the actual contributor of fluorescence between 300 and 400 nm is the stabilizer molecule, i.e., 3-tert-butyl-4-hydroxyanisole present in the commercially available PEG 20k. Therefore, the reported fluorescence properties of PEG should be taken with a grain of salt, warranting further investigation.

SELECTION OF CITATIONS
SEARCH DETAIL