Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Immunol ; 212(11): 1706-1713, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38619286

ABSTRACT

Mucosal-Associated Invariant T (MAIT) cells are a population of innate T cells that play a critical role in host protection against bacterial and viral pathogens. Upon activation, MAIT cells can rapidly respond via both TCR-dependent and -independent mechanisms, resulting in robust cytokine production. The metabolic and nutritional requirements for optimal MAIT cell effector responses are still emerging. Iron is an important micronutrient and is essential for cellular fitness, in particular cellular metabolism. Iron is also critical for many pathogenic microbes, including those that activate MAIT cells. However, iron has not been investigated with respect to MAIT cell metabolic or functional responses. In this study, we show that human MAIT cells require exogenous iron, transported via CD71 for optimal metabolic activity in MAIT cells, including their production of ATP. We demonstrate that restricting iron availability by either chelating environmental iron or blocking CD71 on MAIT cells results in impaired cytokine production and proliferation. These data collectively highlight the importance of a CD71-iron axis for human MAIT cell metabolism and functionality, an axis that may have implications in conditions where iron availability is limited.


Subject(s)
Antigens, CD , Cytokines , Iron , Lymphocyte Activation , Mucosal-Associated Invariant T Cells , Receptors, Transferrin , Humans , Mucosal-Associated Invariant T Cells/immunology , Iron/metabolism , Receptors, Transferrin/metabolism , Receptors, Transferrin/immunology , Antigens, CD/metabolism , Antigens, CD/immunology , Lymphocyte Activation/immunology , Cytokines/metabolism , Cell Proliferation , Cells, Cultured , Adenosine Triphosphate/metabolism
2.
Nat Metab ; 6(4): 651-658, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38499765

ABSTRACT

Metformin, a widely used first-line treatment for type 2 diabetes (T2D), is known to reduce blood glucose levels and suppress appetite. Here we report a significant elevation of the appetite-suppressing metabolite N-lactoyl phenylalanine (Lac-Phe) in the blood of individuals treated with metformin across seven observational and interventional studies. Furthermore, Lac-Phe levels were found to rise in response to acute metformin administration and post-prandially in patients with T2D or in metabolically healthy volunteers.


Subject(s)
Diabetes Mellitus, Type 2 , Metformin , Phenylalanine , Humans , Metformin/pharmacology , Metformin/therapeutic use , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/blood , Phenylalanine/blood , Phenylalanine/metabolism , Hypoglycemic Agents/therapeutic use , Hypoglycemic Agents/pharmacology , Male , Female , Blood Glucose/metabolism , Appetite Depressants/therapeutic use , Appetite Depressants/pharmacology , Appetite/drug effects , Adult , Middle Aged , Postprandial Period
SELECTION OF CITATIONS
SEARCH DETAIL