Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters










Publication year range
1.
Ecology ; 104(9): e4137, 2023 09.
Article in English | MEDLINE | ID: mdl-37424187

ABSTRACT

Determining the spatial distributions of species and communities is a key task in ecology and conservation efforts. Joint species distribution models are a fundamental tool in community ecology that use multi-species detection-nondetection data to estimate species distributions and biodiversity metrics. The analysis of such data is complicated by residual correlations between species, imperfect detection, and spatial autocorrelation. While many methods exist to accommodate each of these complexities, there are few examples in the literature that address and explore all three complexities simultaneously. Here we developed a spatial factor multi-species occupancy model to explicitly account for species correlations, imperfect detection, and spatial autocorrelation. The proposed model uses a spatial factor dimension reduction approach and Nearest Neighbor Gaussian Processes to ensure computational efficiency for data sets with both a large number of species (e.g., >100) and spatial locations (e.g., 100,000). We compared the proposed model performance to five alternative models, each addressing a subset of the three complexities. We implemented the proposed and alternative models in the spOccupancy software, designed to facilitate application via an accessible, well documented, and open-source R package. Using simulations, we found that ignoring the three complexities when present leads to inferior model predictive performance, and the impacts of failing to account for one or more complexities will depend on the objectives of a given study. Using a case study on 98 bird species across the continental US, the spatial factor multi-species occupancy model had the highest predictive performance among the alternative models. Our proposed framework, together with its implementation in spOccupancy, serves as a user-friendly tool to understand spatial variation in species distributions and biodiversity while addressing common complexities in multi-species detection-nondetection data.


Subject(s)
Birds , Ecology , Animals , Ecology/methods , Biodiversity , Spatial Analysis
2.
J Am Stat Assoc ; 117(538): 969-982, 2022.
Article in English | MEDLINE | ID: mdl-35935897

ABSTRACT

We introduce a class of scalable Bayesian hierarchical models for the analysis of massive geostatistical datasets. The underlying idea combines ideas on high-dimensional geostatistics by partitioning the spatial domain and modeling the regions in the partition using a sparsity-inducing directed acyclic graph (DAG). We extend the model over the DAG to a well-defined spatial process, which we call the Meshed Gaussian Process (MGP). A major contribution is the development of a MGPs on tessellated domains, accompanied by a Gibbs sampler for the efficient recovery of spatial random effects. In particular, the cubic MGP (Q-MGP) can harness high-performance computing resources by executing all large-scale operations in parallel within the Gibbs sampler, improving mixing and computing time compared to sequential updating schemes. Unlike some existing models for large spatial data, a Q-MGP facilitates massive caching of expensive matrix operations, making it particularly apt in dealing with spatiotemporal remote-sensing data. We compare Q-MGPs with large synthetic and real world data against state-of-the-art methods. We also illustrate using Normalized Difference Vegetation Index (NDVI) data from the Serengeti park region to recover latent multivariate spatiotemporal random effects at millions of locations. The source code is available at github.com/mkln/meshgp.

3.
Glob Chang Biol ; 28(7): 2442-2460, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35023229

ABSTRACT

Robust ecological forecasting of tree growth under future climate conditions is critical to anticipate future forest carbon storage and flux. Here, we apply three ingredients of ecological forecasting that are key to improving forecast skill: data fusion, confronting model predictions with new data, and partitioning forecast uncertainty. Specifically, we present the first fusion of tree-ring and forest inventory data within a Bayesian state-space model at a multi-site, regional scale, focusing on Pinus ponderosa var. brachyptera in the southwestern US. Leveraging the complementarity of these two data sources, we parsed the ecological complexity of tree growth into the effects of climate, tree size, stand density, site quality, and their interactions, and quantified uncertainties associated with these effects. New measurements of trees, an ongoing process in forest inventories, were used to confront forecasts of tree diameter with observations, and evaluate alternative tree growth models. We forecasted tree diameter and increment in response to an ensemble of climate change projections, and separated forecast uncertainty into four different causes: initial conditions, parameters, climate drivers, and process error. We found a strong negative effect of fall-spring maximum temperature, and a positive effect of water-year precipitation on tree growth. Furthermore, tree vulnerability to climate stress increases with greater competition, with tree size, and at poor sites. Under future climate scenarios, we forecast increment declines of 22%-117%, while the combined effect of climate and size-related trends results in a 56%-91% decline. Partitioning of forecast uncertainty showed that diameter forecast uncertainty is primarily caused by parameter and initial conditions uncertainty, but increment forecast uncertainty is mostly caused by process error and climate driver uncertainty. This fusion of tree-ring and forest inventory data lays the foundation for robust ecological forecasting of aboveground biomass and carbon accounting at tree, plot, and regional scales, including iterative improvement of model skill.


Subject(s)
Forests , Pinus , Bayes Theorem , Carbon , Climate Change , Uncertainty
4.
Ecol Appl ; 31(6): e02377, 2021 09.
Article in English | MEDLINE | ID: mdl-33988277

ABSTRACT

Improved monitoring and associated inferential tools to efficiently identify declining bird populations, particularly of rare or sparsely distributed species, is key to informed conservation and management across large spatiotemporal regions. We assess abundance trends for 106 bird species in a network of eight forested national parks located within the northeast United States from 2006 to 2019 using a novel hierarchical model. We develop a multispecies, multiregion, removal-sampling model that shares information across species and parks to enable inference on rare species and sparsely sampled parks and to evaluate the effects of local forest structure. Trends in bird abundance over time varied widely across parks, but species showed similar trends within parks. Three parks (Acadia National Park and Marsh-Billings-Rockefeller and Morristown National Historical Parks [NHP]) decreased in bird abundance across all species, while three parks (Saratoga NHP and Roosevelt-Vanderbilt and Weir-Farm National Historic Sites) increased in abundance. Bird abundance peaked at medium levels of basal area and high levels of percent forest and forest regeneration, with percent forest having the largest effect. Variation in these effects across parks could be a result of differences in forest structural stage and diversity. By sharing information across both communities and parks, our novel hierarchical model enables uncertainty-quantified estimates of abundance across multiple geographical (i.e., network, park) and taxonomic (i.e., community, guild, species) levels over a large spatiotemporal region. We found large variation in abundance trends across parks but not across bird guilds, suggesting that local forest condition might have a broad and consistent effect on the entire bird community within a given park. Research should target the three parks with overall decreasing trends in bird abundance to further identify what specific factors are driving observed declines across the bird community. Understanding how bird communities respond to local forest structure and other stressors (e.g., pest outbreaks, climate change) is crucial for informed and lasting management.


Subject(s)
Birds , Forests , Animals , Biodiversity , Climate Change , Geography , Parks, Recreational
5.
Nat Commun ; 12(1): 451, 2021 01 19.
Article in English | MEDLINE | ID: mdl-33469023

ABSTRACT

Changing forest disturbance regimes and climate are driving accelerated tree mortality across temperate forests. However, it remains unknown if elevated mortality has induced decline of tree populations and the ecological, economic, and social benefits they provide. Here, we develop a standardized forest demographic index and use it to quantify trends in tree population dynamics over the last two decades in the western United States. The rate and pattern of change we observe across species and tree size-distributions is alarming and often undesirable. We observe significant population decline in a majority of species examined, show decline was particularly severe, albeit size-dependent, among subalpine tree species, and provide evidence of widespread shifts in the size-structure of montane forests. Our findings offer a stark warning of changing forest composition and structure across the western US, and suggest that sustained anthropogenic and natural stress will likely result in broad-scale transformation of temperate forests globally.


Subject(s)
Ecological Parameter Monitoring/trends , Forests , Plant Dispersal , Trees , Climate Change , Conservation of Natural Resources , Ecological Parameter Monitoring/statistics & numerical data , Models, Statistical , Spatial Analysis , United States
6.
J Agric Biol Environ Stat ; 24(3): 398-425, 2019.
Article in English | MEDLINE | ID: mdl-31496633

ABSTRACT

The Gaussian process is an indispensable tool for spatial data analysts. The onset of the "big data" era, however, has lead to the traditional Gaussian process being computationally infeasible for modern spatial data. As such, various alternatives to the full Gaussian process that are more amenable to handling big spatial data have been proposed. These modern methods often exploit low-rank structures and/or multi-core and multi-threaded computing environments to facilitate computation. This study provides, first, an introductory overview of several methods for analyzing large spatial data. Second, this study describes the results of a predictive competition among the described methods as implemented by different groups with strong expertise in the methodology. Specifically, each research group was provided with two training datasets (one simulated and one observed) along with a set of prediction locations. Each group then wrote their own implementation of their method to produce predictions at the given location and each was subsequently run on a common computing environment. The methods were then compared in terms of various predictive diagnostics. Supplementary materials regarding implementation details of the methods and code are available for this article online. ELECTRONIC SUPPLEMENTARY MATERIAL: Supplementary materials for this article are available at 10.1007/s13253-018-00348-w.

7.
J Comput Graph Stat ; 28(2): 401-414, 2019.
Article in English | MEDLINE | ID: mdl-31543693

ABSTRACT

We consider alternate formulations of recently proposed hierarchical Nearest Neighbor Gaussian Process (NNGP) models (Datta et al., 2016a) for improved convergence, faster computing time, and more robust and reproducible Bayesian inference. Algorithms are defined that improve CPU memory management and exploit existing high-performance numerical linear algebra libraries. Computational and inferential benefits are assessed for alternate NNGP specifications using simulated datasets and remotely sensed light detection and ranging (LiDAR) data collected over the US Forest Service Tanana Inventory Unit (TIU) in a remote portion of Interior Alaska. The resulting data product is the first statistically robust map of forest canopy for the TIU.

8.
Glob Ecol Biogeogr ; 28(5): 548-556, 2019 May.
Article in English | MEDLINE | ID: mdl-31217748

ABSTRACT

ISSUE: Geodiversity (i.e., the variation in Earth's abiotic processes and features) has strong effects on biodiversity patterns. However, major gaps remain in our understanding of how relationships between biodiversity and geodiversity vary over space and time. Biodiversity data are globally sparse and concentrated in particular regions. In contrast, many forms of geodiversity can be measured continuously across the globe with satellite remote sensing. Satellite remote sensing directly measures environmental variables with grain sizes as small as tens of metres and can therefore elucidate biodiversity-geodiversity relationships across scales. EVIDENCE: We show how one important geodiversity variable, elevation, relates to alpha, beta and gamma taxonomic diversity of trees across spatial scales. We use elevation from NASA's Shuttle Radar Topography Mission (SRTM) and c. 16,000 Forest Inventory and Analysis plots to quantify spatial scaling relationships between biodiversity and geodiversity with generalized linear models (for alpha and gamma diversity) and beta regression (for beta diversity) across five spatial grains ranging from 5 to 100 km. We illustrate different relationships depending on the form of diversity; beta and gamma diversity show the strongest relationship with variation in elevation. CONCLUSION: With the onset of climate change, it is more important than ever to examine geodiversity for its potential to foster biodiversity. Widely available satellite remotely sensed geodiversity data offer an important and expanding suite of measurements for understanding and predicting changes in different forms of biodiversity across scales. Interdisciplinary research teams spanning biodiversity, geoscience and remote sensing are well poised to advance understanding of biodiversity-geodiversity relationships across scales and guide the conservation of nature.

9.
Stat Sin ; 29: 1155-1180, 2019.
Article in English | MEDLINE | ID: mdl-33311955

ABSTRACT

Gathering information about forest variables is an expensive and arduous activity. As such, directly collecting the data required to produce high-resolution maps over large spatial domains is infeasible. Next generation collection initiatives of remotely sensed Light Detection and Ranging (LiDAR) data are specifically aimed at producing complete-coverage maps over large spatial domains. Given that LiDAR data and forest characteristics are often strongly correlated, it is possible to make use of the former to model, predict, and map forest variables over regions of interest. This entails dealing with the high-dimensional (~102) spatially dependent LiDAR outcomes over a large number of locations (~105-106). With this in mind, we develop the Spatial Factor Nearest Neighbor Gaussian Process (SF-NNGP) model, and embed it in a two-stage approach that connects the spatial structure found in LiDAR signals with forest variables. We provide a simulation experiment that demonstrates inferential and predictive performance of the SF-NNGP, and use the two-stage modeling strategy to generate complete-coverage maps of forest variables with associated uncertainty over a large region of boreal forests in interior Alaska.

10.
PLoS One ; 13(12): e0204150, 2018.
Article in English | MEDLINE | ID: mdl-30517091

ABSTRACT

Modeling spatially explicit data provides a powerful approach to identify the effects of exogenous features associated with biological processes, including recruitment of stream fishes. However, the complex spatial and temporal dynamics of the stream and the species' reproductive and early life stage behaviors present challenges to drawing valid inference using traditional regression models. In these settings it is often difficult to ensure the spatial independence among model residuals-a key assumption that must be met to ensure valid inference. We present statistical models capable of capturing complex residual anisotropic patterns through the addition of spatial random effects within an inferential framework that acknowledges uncertainty in the data and parameters. Proposed models are used to explore the impact of environmental variables on Lake sturgeon (Acipenser fulvescens) reproduction, particularly questions about patterns in egg deposition. Our results demonstrate the need to apply valid statistical methods to identify relationships between response variables, e.g., egg counts, across locations, and environmental covariates in the presence of strong and anisotropic autocorrelation in stream systems. The models may be applied to other settings where gamete distribution or, more generally, other biotic phenomena may be associated with spatially dynamic and anisotropic processes.


Subject(s)
Ecosystem , Fishes/physiology , Lakes , Models, Biological , Reproduction/physiology , Animals
11.
Ecol Appl ; 27(4): 1082-1095, 2017 06.
Article in English | MEDLINE | ID: mdl-28182303

ABSTRACT

Changes in the frequency, duration, and severity of climate extremes are forecast to occur under global climate change. The impacts of climate extremes on forest productivity and health remain difficult to predict due to potential interactions with disturbance events and forest dynamics-changes in forest stand composition, density, size and age structure over time. Such interactions may lead to non-linear forest growth responses to climate involving thresholds and lag effects. Understanding how forest dynamics influence growth responses to climate is particularly important given stand structure and composition can be modified through management to increase forest resistance and resilience to climate change. To inform such adaptive management, we develop a hierarchical Bayesian state space model in which climate effects on tree growth are allowed to vary over time and in relation to past climate extremes, disturbance events, and forest dynamics. The model is an important step toward integrating disturbance and forest dynamics into predictions of forest growth responses to climate extremes. We apply the model to a dendrochronology data set from forest stands of varying composition, structure, and development stage in northeastern Minnesota that have experienced extreme climate years and forest tent caterpillar defoliation events. Mean forest growth was most sensitive to water balance variables representing climatic water deficit. Forest growth responses to water deficit were partitioned into responses driven by climatic threshold exceedances and interactions with insect defoliation. Forest growth was both resistant and resilient to climate extremes with the majority of forest growth responses occurring after multiple climatic threshold exceedances across seasons and years. Interactions between climate and disturbance were observed in a subset of years with insect defoliation increasing forest growth sensitivity to water availability. Forest growth was particularly sensitive to climate extremes during periods of high stem density following major regeneration events when average inter-tree competition was high. Results suggest the resistance and resilience of forest growth to climate extremes can be increased through management steps such as thinning to reduce competition during early stages of stand development and small-group selection harvests to maintain forest structures characteristic of older, mature stands.


Subject(s)
Climate Change , Forestry , Forests , Trees/physiology , Bayes Theorem , Minnesota , Models, Biological , Population Dynamics
12.
Ecology ; 97(9): 2406-2415, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27859074

ABSTRACT

Understanding processes that promote species coexistence is integral to diversity maintenance. In hyperdiverse tropical forests, local conspecific density (LCD) and light are influential to woody seedling recruitment and soil nutrients are often limiting, yet the simultaneous effects of these factors on seedling survival across time remain unknown. We fit species- and age-specific models to census and resource data of seedlings of 68 woody species from a Costa Rican wet tropical forest. In decreasing order of prevalence, seedling survivorship was related to LCD, soil base cations, irradiance, nitrogen, and phosphorus. Species-specific responses to factors did not covary, providing evidence that species life history strategies have not converged to one continuum of high-surviving stress tolerant to low-surviving stress intolerant species. Survival responses to all factors varied over the average seedling's lifetime, indicating seedling requirements change with age and conclusions drawn about processes important to species coexistence depend on temporal resolution.


Subject(s)
Forests , Seedlings/physiology , Soil/chemistry , Nitrogen/analysis , Phosphorus/analysis , Species Specificity , Trees , Tropical Climate
13.
PLoS One ; 11(10): e0164592, 2016.
Article in English | MEDLINE | ID: mdl-27736962

ABSTRACT

The nutrient-water color paradigm is a framework to characterize lake trophic status by relating lake primary productivity to both nutrients and water color, the colored component of dissolved organic carbon. Total phosphorus (TP), a limiting nutrient, and water color, a strong light attenuator, influence lake chlorophyll a concentrations (CHL). But, these relationships have been shown in previous studies to be highly variable, which may be related to differences in lake and catchment geomorphology, the forms of nutrients and carbon entering the system, and lake community composition. Because many of these factors vary across space it is likely that lake nutrient and water color relationships with CHL exhibit spatial autocorrelation, such that lakes near one another have similar relationships compared to lakes further away. Including this spatial dependency in models may improve CHL predictions and clarify how well the nutrient-water color paradigm applies to lakes distributed across diverse landscape settings. However, few studies have explicitly examined spatial heterogeneity in the effects of TP and water color together on lake CHL. In this study, we examined spatial variation in TP and water color relationships with CHL in over 800 north temperate lakes using spatially-varying coefficient models (SVC), a robust statistical method that applies a Bayesian framework to explore space-varying and scale-dependent relationships. We found that TP and water color relationships were spatially autocorrelated and that allowing for these relationships to vary by individual lakes over space improved the model fit and predictive performance as compared to models that did not vary over space. The magnitudes of TP effects on CHL differed across lakes such that a 1 µg/L increase in TP resulted in increased CHL ranging from 2-24 µg/L across lake locations. Water color was not related to CHL for the majority of lakes, but there were some locations where water color had a positive effect such that a unit increase in water color resulted in a 2 µg/L increase in CHL and other locations where it had a negative effect such that a unit increase in water color resulted in a 2 µg/L decrease in CHL. In addition, the spatial scales that captured variation in TP and water color effects were different for our study lakes. Variation in TP-CHL relationships was observed at intermediate distances (~20 km) compared to variation in water color-CHL relationships that was observed at regional distances (~200 km). These results demonstrate that there are lake-to-lake differences in the effects of TP and water color on lake CHL and that this variation is spatially structured. Quantifying spatial structure in these relationships furthers our understanding of the variability in these relationships at macroscales and would improve model prediction of chlorophyll a to better meet lake management goals.


Subject(s)
Chlorophyll/analysis , Environmental Monitoring/methods , Lakes/chemistry , Phosphorus/analysis , Bayes Theorem , Eutrophication , Models, Statistical
14.
Glob Chang Biol ; 22(6): 2138-51, 2016 Jun.
Article in English | MEDLINE | ID: mdl-26717889

ABSTRACT

As global temperatures rise, variation in annual climate is also changing, with unknown consequences for forest biomes. Growing forests have the ability to capture atmospheric CO2 and thereby slow rising CO2 concentrations. Forests' ongoing ability to sequester C depends on how tree communities respond to changes in climate variation. Much of what we know about tree and forest response to climate variation comes from tree-ring records. Yet typical tree-ring datasets and models do not capture the diversity of climate responses that exist within and among trees and species. We address this issue using a model that estimates individual tree response to climate variables while accounting for variation in individuals' size, age, competitive status, and spatially structured latent covariates. Our model allows for inference about variance within and among species. We quantify how variables influence aboveground biomass growth of individual trees from a representative sample of 15 northern or southern tree species growing in a transition zone between boreal and temperate biomes. Individual trees varied in their growth response to fluctuating mean annual temperature and summer moisture stress. The variation among individuals within a species was wider than mean differences among species. The effects of mean temperature and summer moisture stress interacted, such that warm years produced positive responses to summer moisture availability and cool years produced negative responses. As climate models project significant increases in annual temperatures, growth of species like Acer saccharum, Quercus rubra, and Picea glauca will vary more in response to summer moisture stress than in the past. The magnitude of biomass growth variation in response to annual climate was 92-95% smaller than responses to tree size and age. This means that measuring or predicting the physical structure of current and future forests could tell us more about future C dynamics than growth responses related to climate change alone.


Subject(s)
Biomass , Climate Change , Forests , Models, Biological , Trees/growth & development , Acer/growth & development , Minnesota , Picea/growth & development , Quercus/growth & development , Seasons , Temperature
15.
Ann Appl Stat ; 10(3): 1286-1316, 2016 Sep.
Article in English | MEDLINE | ID: mdl-29657659

ABSTRACT

Particulate matter (PM) is a class of malicious environmental pollutants known to be detrimental to human health. Regulatory efforts aimed at curbing PM levels in different countries often require high resolution space-time maps that can identify red-flag regions exceeding statutory concentration limits. Continuous spatio-temporal Gaussian Process (GP) models can deliver maps depicting predicted PM levels and quantify predictive uncertainty. However, GP-based approaches are usually thwarted by computational challenges posed by large datasets. We construct a novel class of scalable Dynamic Nearest Neighbor Gaussian Process (DNNGP) models that can provide a sparse approximation to any spatio-temporal GP (e.g., with nonseparable covariance structures). The DNNGP we develop here can be used as a sparsity-inducing prior for spatio-temporal random effects in any Bayesian hierarchical model to deliver full posterior inference. Storage and memory requirements for a DNNGP model are linear in the size of the dataset, thereby delivering massive scalability without sacrificing inferential richness. Extensive numerical studies reveal that the DNNGP provides substantially superior approximations to the underlying process than low-rank approximations. Finally, we use the DNNGP to analyze a massive air quality dataset to substantially improve predictions of PM levels across Europe in conjunction with the LOTOS-EUROS chemistry transport models (CTMs).

16.
Article in English | MEDLINE | ID: mdl-29657666

ABSTRACT

Gaussian Process (GP) models provide a very flexible nonparametric approach to modeling location-and-time indexed datasets. However, the storage and computational requirements for GP models are infeasible for large spatial datasets. Nearest Neighbor Gaussian Processes (Datta A, Banerjee S, Finley AO, Gelfand AE. Hierarchical nearest-neighbor gaussian process models for large geostatistical datasets. J Am Stat Assoc 2016., JASA) provide a scalable alternative by using local information from few nearest neighbors. Scalability is achieved by using the neighbor sets in a conditional specification of the model. We show how this is equivalent to sparse modeling of Cholesky factors of large covariance matrices. We also discuss a general approach to construct scalable Gaussian Processes using sparse local kriging. We present a multivariate data analysis which demonstrates how the nearest neighbor approach yields inference indistinguishable from the full rank GP despite being several times faster. Finally, we also propose a variant of the NNGP model for automating the selection of the neighbor set size.

17.
J Am Stat Assoc ; 111(514): 800-812, 2016.
Article in English | MEDLINE | ID: mdl-29720777

ABSTRACT

Spatial process models for analyzing geostatistical data entail computations that become prohibitive as the number of spatial locations become large. This article develops a class of highly scalable nearest-neighbor Gaussian process (NNGP) models to provide fully model-based inference for large geostatistical datasets. We establish that the NNGP is a well-defined spatial process providing legitimate finite-dimensional Gaussian densities with sparse precision matrices. We embed the NNGP as a sparsity-inducing prior within a rich hierarchical modeling framework and outline how computationally efficient Markov chain Monte Carlo (MCMC) algorithms can be executed without storing or decomposing large matrices. The floating point operations (flops) per iteration of this algorithm is linear in the number of spatial locations, thereby rendering substantial scalability. We illustrate the computational and inferential benefits of the NNGP over competing methods using simulation studies and also analyze forest biomass from a massive U.S. Forest Inventory dataset at a scale that precludes alternative dimension-reducing methods. Supplementary materials for this article are available online.

18.
PLoS Negl Trop Dis ; 9(10): e0004123, 2015.
Article in English | MEDLINE | ID: mdl-26474482

ABSTRACT

BACKGROUND: Land use and land cover (LULC) change is one anthropogenic disturbance linked to infectious disease emergence. Current research has focused largely on wildlife and vector-borne zoonotic diseases, neglecting to investigate landscape disturbance and environmental bacterial infections. One example is Buruli ulcer (BU) disease, a necrotizing skin disease caused by the environmental pathogen Mycobacterium ulcerans (MU). Empirical and anecdotal observations have linked BU incidence to landscape disturbance, but potential relationships have not been quantified as they relate to land cover configurations. METHODOLOGY/PRINCIPAL FINDINGS: A landscape ecological approach utilizing Bayesian hierarchical models with spatial random effects was used to test study hypotheses that land cover configurations indicative of anthropogenic disturbance were related to Buruli ulcer (BU) disease in southern Benin, and that a spatial structure existed for drivers of BU case distribution in the region. A final objective was to generate a continuous, risk map across the study region. Results suggested that villages surrounded by naturally shaped, or undisturbed rather than disturbed, wetland patches at a distance within 1200 m were at a higher risk for BU, and study outcomes supported the hypothesis that a spatial structure exists for the drivers behind BU risk in the region. The risk surface corresponded to known BU endemicity in Benin and identified moderate risk areas within the boundary of Togo. CONCLUSIONS/SIGNIFICANCE: This study was a first attempt to link land cover configurations representative of anthropogenic disturbances to BU prevalence. Study results identified several significant variables, including the presence of natural wetland areas, warranting future investigations into these factors at additional spatial and temporal scales. A major contribution of this study included the incorporation of a spatial modeling component that predicted BU rates to new locations without strong knowledge of environmental factors contributing to disease distribution.


Subject(s)
Buruli Ulcer/epidemiology , Environmental Exposure , Human Activities , Mycobacterium ulcerans/isolation & purification , Benin/epidemiology , Cross-Sectional Studies , Humans , Risk Assessment , Spatial Analysis , Topography, Medical
19.
Glob Chang Biol ; 21(8): 2942-53, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25644514

ABSTRACT

Forecasting the consequences of climate change is contingent upon our understanding of the relationship between biodiversity patterns and climatic variability. While the impacts of climate change on individual species have been well-documented, there is a paucity of studies on climate-mediated changes in community dynamics. Our objectives were to investigate the relationship between temporal turnover in avian biodiversity and changes in climatic conditions and to assess the role of landscape fragmentation in affecting this relationship. We hypothesized that community turnover would be highest in regions experiencing the most pronounced changes in climate and that these patterns would be reduced in human-dominated landscapes. To test this hypothesis, we quantified temporal turnover in avian communities over a 20-year period using data from the New York State Breeding Atlases collected during 1980-1985 and 2000-2005. We applied Bayesian spatially varying intercept models to evaluate the relationship between temporal turnover and temporal trends in climatic conditions and landscape fragmentation. We found that models including interaction terms between climate change and landscape fragmentation were superior to models without the interaction terms, suggesting that the relationship between avian community turnover and changes in climatic conditions was affected by the level of landscape fragmentation. Specifically, we found weaker associations between temporal turnover and climatic change in regions with prevalent habitat fragmentation. We suggest that avian communities in fragmented landscapes are more robust to climate change than communities found in contiguous habitats because they are comprised of species with wider thermal niches and thus are less susceptible to shifts in climatic variability. We conclude that highly fragmented regions are likely to undergo less pronounced changes in composition and structure of faunal communities as a result of climate change, whereas those changes are likely to be greater in contiguous and unfragmented habitats.


Subject(s)
Birds , Climate Change , Ecosystem , Animals , Extinction, Biological , Models, Theoretical , New York
20.
Article in English | MEDLINE | ID: mdl-24826196

ABSTRACT

BACKGROUND: Forest Inventory and Analysis (FIA) data may be a valuable component of a LIDAR-based carbon monitoring system, but integration of the two observation systems is not without challenges. To explore integration methods, two wall-to-wall LIDAR-derived biomass maps were compared to FIA data at both the plot and county levels in Anne Arundel and Howard Counties in Maryland. Allometric model-related errors were also considered. RESULTS: In areas of medium to dense biomass, the FIA data were valuable for evaluating map accuracy by comparing plot biomass to pixel values. However, at plots that were defined as "nonforest", FIA plots had limited value because tree data was not collected even though trees may be present. When the FIA data were combined with a previous inventory that included sampling of nonforest plots, 21 to 27% of the total biomass of all trees was accounted for in nonforest conditions, resulting in a more accurate benchmark for comparing to total biomass derived from the LIDAR maps. Allometric model error was relatively small, but there was as much as 31% difference in mean biomass based on local diameter-based equations compared to regional volume-based equations, suggesting that the choice of allometric model is important. CONCLUSIONS: To be successfully integrated with LIDAR, FIA sampling would need to be enhanced to include measurements of all trees in a landscape, not just those on land defined as "forest". Improved GPS accuracy of plot locations, intensifying data collection in small areas with few FIA plots, and other enhancements are also recommended.

SELECTION OF CITATIONS
SEARCH DETAIL
...