Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Evolution ; 76(3): 512-527, 2022 03.
Article in English | MEDLINE | ID: mdl-35038345

ABSTRACT

Phenotypic plasticity is predicted to evolve in environmentally variable habitats, or those experiencing a high frequency of strong selection. The evolution of plasticity may however be constrained by costs or physiological limitations. In flowers, UV-absorbing pigmentation ameliorates UV damage to pollen, and is linked with elevated UV exposure. Whether plasticity contributes to this pattern remains unclear. Petals of Argentina anserina have larger UV-absorbing petal areas at high elevations where they experience higher and more variable UV exposure than low elevations. We measured UV-induced pigmentation plasticity in high- and low-elevation populations (hereafter, "high," "low"), and selection on pigmentation via male fitness. We dissected UV pigment biochemistry using metabolomics to explore biochemical mechanisms underlying plasticity. High displayed positive UV-induced pigmentation plasticity but low lacked plasticity. Selection favored elevated pigmentation under UV in high, supporting adaptive plasticity. In high, UV absorption was conferred by flavonoids produced in one flavonoid pathway branch. However, in low, UV absorption was associated with many compounds spanning multiple branches. Elevated plasticity was thus associated with reduced pigment diversity. These results are consistent with adaptive floral pigmentation plasticity in more extreme and variable environments. We discuss how biochemical underpinnings of pigmentation may permit or constrain the evolution of pigmentation plasticity.


Subject(s)
Flowers , Pigmentation , Adaptation, Physiological , Flavonoids/metabolism , Flowers/physiology , Pigmentation/physiology , Pollen
2.
New Phytol ; 232(3): 1436-1448, 2021 11.
Article in English | MEDLINE | ID: mdl-34287921

ABSTRACT

Sensory Drive predicts that habitat-dependent signal transmission and perception explain the diversification of communication signals. Whether Sensory Drive shapes floral evolution remains untested in nature. Pollinators of Argentina anserina prefer small ultraviolet (UV)-absorbing floral guides at low elevation but larger guides at high. However, mechanisms underlying differential preference are unclear. High elevation populations experience elevated UV irradiance and frequently flower against bare substrates rather than foliage, potentially impacting signal transmission and perception. At high and low elevation extremes, we experimentally tested the effects of UV light (ambient vs reduced) and floral backgrounds (foliage vs bare) on pollinator choice for UV guide size. We examined how different signalling environments shaped pollinator-perceived flower colour using visual system models. At high elevation, pollinators preferred locally common large UV guides under ambient UV, but lacked preference under reduced UV. Flies preferred large guides only against bare substrate, the common high elevation background. Ambient UV amplified contrast of large UV guides with floral backgrounds, and flowers contrasted more with bare ground than foliage. Results support that local signalling conditions contribute to pollinator preference for a floral visual signal, a key tenet of Sensory Drive. Components of Sensory Drive could shape floral signal evolution in other plants spanning heterogeneous signalling environments.


Subject(s)
Flowers , Pollination , Ecosystem , Plants , Ultraviolet Rays
SELECTION OF CITATIONS
SEARCH DETAIL
...