Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Mol Cancer ; 23(1): 105, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38755661

ABSTRACT

BACKGROUND: The main drawback of BRAF/MEK inhibitors (BRAF/MEKi)-based targeted therapy in the management of BRAF-mutated cutaneous metastatic melanoma (MM) is the development of therapeutic resistance. We aimed to assess in this context the role of mTORC2, a signaling complex defined by the presence of the essential RICTOR subunit, regarded as an oncogenic driver in several tumor types, including MM. METHODS: After analyzing The Cancer Genome Atlas MM patients' database to explore both overall survival and molecular signatures as a function of intra-tumor RICTOR levels, we investigated the effects of RICTOR downregulation in BRAFV600E MM cell lines on their response to BRAF/MEKi. We performed proteomic screening to identify proteins modulated by changes in RICTOR expression, and Seahorse analysis to evaluate the effects of RICTOR depletion on mitochondrial respiration. The combination of BRAFi with drugs targeting proteins and processes emerged in the proteomic screening was carried out on RICTOR-deficient cells in vitro and in a xenograft setting in vivo. RESULTS: Low RICTOR levels in BRAF-mutated MM correlate with a worse clinical outcome. Gene Set Enrichment Analysis of low-RICTOR tumors display gene signatures suggestive of activation of the mitochondrial Electron Transport Chain (ETC) energy production. RICTOR-deficient BRAFV600E cells are intrinsically tolerant to BRAF/MEKi and anticipate the onset of resistance to BRAFi upon prolonged drug exposure. Moreover, in drug-naïve cells we observed a decline in RICTOR expression shortly after BRAFi exposure. In RICTOR-depleted cells, both mitochondrial respiration and expression of nicotinamide phosphoribosyltransferase (NAMPT) are enhanced, and their pharmacological inhibition restores sensitivity to BRAFi. CONCLUSIONS: Our work unveils an unforeseen tumor-suppressing role for mTORC2 in the early adaptation phase of BRAFV600E melanoma cells to targeted therapy and identifies the NAMPT-ETC axis as a potential therapeutic vulnerability of low RICTOR tumors. Importantly, our findings indicate that the evaluation of intra-tumor RICTOR levels has a prognostic value in metastatic melanoma and may help to guide therapeutic strategies in a personalized manner.


Subject(s)
Drug Resistance, Neoplasm , Mechanistic Target of Rapamycin Complex 2 , Melanoma , Protein Kinase Inhibitors , Proto-Oncogene Proteins B-raf , Rapamycin-Insensitive Companion of mTOR Protein , Animals , Humans , Mice , Cell Line, Tumor , Down-Regulation , Drug Resistance, Neoplasm/genetics , Gene Expression Regulation, Neoplastic , Mechanistic Target of Rapamycin Complex 2/metabolism , Mechanistic Target of Rapamycin Complex 2/genetics , Melanoma/genetics , Melanoma/drug therapy , Melanoma/metabolism , Melanoma/pathology , Mutation , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Proteomics/methods , Proto-Oncogene Proteins B-raf/antagonists & inhibitors , Proto-Oncogene Proteins B-raf/genetics , Rapamycin-Insensitive Companion of mTOR Protein/metabolism , Rapamycin-Insensitive Companion of mTOR Protein/genetics , Xenograft Model Antitumor Assays , MAP Kinase Kinase Kinases/antagonists & inhibitors
2.
Cells ; 12(16)2023 08 11.
Article in English | MEDLINE | ID: mdl-37626858

ABSTRACT

Malignant pleural mesothelioma (MPM) is a lethal and rare cancer, even if its incidence has continuously increased all over the world. Asbestos exposure leads to the development of mesothelioma through multiple mechanisms, including chronic inflammation, oxidative stress with reactive oxygen species (ROS) generation, and persistent aberrant signaling. Together, these processes, over the years, force normal mesothelial cells' transformation. Chronic inflammation supported by "frustrated" macrophages exposed to asbestos fibers is also boosted by the release of pro-inflammatory cytokines, chemokines, growth factors, damage-associated molecular proteins (DAMPs), and the generation of ROS. In addition, the hypoxic microenvironment influences MPM and immune cells' features, leading to a significant rewiring of metabolism and phenotypic plasticity, thereby supporting tumor aggressiveness and modulating infiltrating immune cell responses. This review provides an overview of the complex tumor-host interactions within the MPM tumor microenvironment at different levels, i.e., soluble factors, metabolic crosstalk, and oxidative stress, and explains how these players supporting tumor transformation and progression may become potential and novel therapeutic targets in MPM.


Subject(s)
Mesothelioma, Malignant , Humans , Reactive Oxygen Species , Oxidative Stress , Carcinogenesis , Inflammation , Tumor Microenvironment
3.
Int J Mol Sci ; 25(1)2023 Dec 29.
Article in English | MEDLINE | ID: mdl-38203626

ABSTRACT

Breast cancer stands as a primary malignancy among women, ranking second in global cancer-related deaths. Despite treatment advancements, many patients progress to metastatic stages, posing a significant therapeutic challenge. Current therapies primarily target cancer cells, overlooking their intricate interactions with the tumor microenvironment (TME) that fuel progression and treatment resistance. Dysregulated innate immunity in breast cancer triggers chronic inflammation, fostering cancer development and therapy resistance. Innate immune pattern recognition receptors (PRRs) have emerged as crucial regulators of the immune response as well as of several immune-mediated or cancer cell-intrinsic mechanisms that either inhibit or promote tumor progression. In particular, several studies showed that the Toll-like receptor 2 (TLR2) and the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathways play a central role in breast cancer progression. In this review, we present a comprehensive overview of the role of TLR2 and STING in breast cancer, and we explore the potential to target these PRRs for drug development. This information will significantly impact the scientific discussion on the use of PRR agonists or inhibitors in cancer therapy, opening up new and promising avenues for breast cancer treatment.


Subject(s)
Breast Neoplasms , Humans , Female , Toll-Like Receptor 2 , Breast , Drug Development , Nucleotidyltransferases , Tumor Microenvironment
4.
Int J Mol Sci ; 23(17)2022 Sep 01.
Article in English | MEDLINE | ID: mdl-36077374

ABSTRACT

Malignant melanoma represents the most fatal skin cancer due to its aggressive behavior and high metastatic potential. The introduction of BRAF/MEK inhibitors and immune-checkpoint inhibitors (ICIs) in the clinic has dramatically improved patient survival over the last decade. However, many patients either display primary (i.e., innate) or develop secondary (i.e., acquired) resistance to systemic treatments. Therapeutic resistance relies on the rewiring of multiple processes, including cancer metabolism, epigenetics, gene expression, and interactions with the tumor microenvironment that are only partially understood. Therefore, reliable biomarkers of resistance or response, capable of facilitating the choice of the best treatment option for each patient, are currently missing. Recently, activation of nicotinamide adenine dinucleotide (NAD) metabolism and, in particular, of its rate-limiting enzyme nicotinamide phosphoribosyltransferase (NAMPT) have been identified as key drivers of targeted therapy resistance and melanoma progression. Another major player in this context is the mammalian target of rapamycin (mTOR) pathway, which plays key roles in the regulation of melanoma cell anabolic functions and energy metabolism at the switch between sensitivity and resistance to targeted therapy. In this review, we summarize known resistance mechanisms to ICIs and targeted therapy, focusing on metabolic adaptation as one main mechanism of drug resistance. In particular, we highlight the roles of NAD/NAMPT and mTOR signaling axes in this context and overview data in support of their inhibition as a promising strategy to overcome treatment resistance.


Subject(s)
Melanoma , Skin Neoplasms , Cytokines/metabolism , Drug Resistance , Humans , Melanoma/metabolism , NAD/metabolism , Nicotinamide Phosphoribosyltransferase/metabolism , Protein Kinase Inhibitors , Skin Neoplasms/drug therapy , TOR Serine-Threonine Kinases , Tumor Microenvironment
SELECTION OF CITATIONS
SEARCH DETAIL