Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
J Am Heart Assoc ; 13(6): e030460, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38456444

ABSTRACT

BACKGROUND: REST (Repressor-Element 1 [RE1]-silencing transcription factor) inhibits Na+/Ca2+exchanger-1 (Ncx1) transcription in neurons through the binding of RE1 site on brain promoter (Br) after stroke. We identified a new putative RE1 site in Ncx1 heart promoter (Ht) sequence (Ht-RE1) that participates in neuronal Ncx1 transcription. Because REST recruits DNA-methyltransferase-1 (DNMT1) and MeCP2 (methyl-CpG binding protein 2) on different neuronal genes, we investigated the role of this complex in Ncx1 transcriptional regulation after stroke. METHODS AND RESULTS: Luciferase experiments performed in SH-SY5Y cells demonstrated that Br activity was selectively decreased by REST, whereas Ht activity was reduced by DNMT1, MeCP2, and REST. Notably, site-direct mutagenesis of Ht-RE1 prevented REST-dependent downregulation of Ncx1. Furthermore, in temporoparietal cortex of 8-week-old male wild-type mice (C57BL/6) subjected to transient middle cerebral artery occlusion, DNMT1, MeCP2, and REST binding to Ht promoter was increased, with a consequent DNA promoter hypermethylation. Intracerebroventricular injection of siREST prevented DNMT1/MeCP2 binding to Ht and Ncx1 downregulation, thus causing a reduction in stroke-induced damage. Consistently, in cortical neurons subjected to oxygen and glucose deprivation plus reoxygenation Ncx1 knockdown counteracted neuronal protection induced by the demethylating agent 5-azacytidine. For comparisons between 2 experimental groups, Student's t test was used, whereas for more than 2 experimental groups, 1-way ANOVA was used, followed by Tukey or Newman Keuls. Statistical significance was set at P<0.05. CONCLUSIONS: If the results of this study are confirmed in humans, it could be asserted that DNMT1/MeCP2/REST complex disruption could be a new pharmacological strategy to reduce DNA methylation of Ht in the brain, ameliorating stroke damage.


Subject(s)
Neuroblastoma , Stroke , Humans , Mice , Male , Animals , DNA Methylation , Mice, Inbred C57BL , Neuroblastoma/metabolism , Stroke/genetics , Stroke/metabolism , Brain/metabolism , Epigenesis, Genetic , DNA
2.
Pharmaceuticals (Basel) ; 16(7)2023 Jul 10.
Article in English | MEDLINE | ID: mdl-37513899

ABSTRACT

Canine mammary tumours (CMTs) are the most common cancer in intact female dogs. In addition to surgery, additional targeted and non-targeted therapies may offer survival benefits to these patients. Therefore, exploring new treatments for CMT is a promising area in veterinary oncology. CMT cells have an altered lipid metabolism and use the oxidation of fatty acids for their energy needs. Here we investigated the tumoricidal effects of teglicar, a reversible inhibitor of carnitine palmitoyl transferase 1A (CPT1A), the rate-limiting enzyme for fatty acid import into mitochondria, on two CMT cells, P114 and CMT-U229. Viability and apoptosis were examined in CMT cells using the crystal violet assay, trypan blue assay, and flow cytometry analysis. The expression of mediators of apoptosis signalling (e.g., caspase-9, caspase-8, and caspase-3) was assessed by quantitative real-time polymerase chain reaction and western blot analyses. Teglicar was able to decrease cell viability and induce apoptosis in P114 and CMT-U229 cells. At the molecular level, the effect of teglicar was associated with an upregulation of the mRNA expression levels of caspase-9, caspase-8, and caspase-3 and an increase in their protein levels. In summary, our results show that teglicar has a potential effect against CMTs through the induction of apoptotic cell death, making it a promising therapeutic agent against CMTs.

3.
Biomolecules ; 13(4)2023 03 28.
Article in English | MEDLINE | ID: mdl-37189354

ABSTRACT

Rett syndrome (RTT, online MIM 312750) is a devastating neurodevelopmental disorder characterized by motor and cognitive disabilities. It is mainly caused by pathogenetic variants in the X-linked MECP2 gene, encoding an epigenetic factor crucial for brain functioning. Despite intensive studies, the RTT pathogenetic mechanism remains to be fully elucidated. Impaired vascular function has been previously reported in RTT mouse models; however, whether an altered brain vascular homeostasis and the subsequent blood-brain barrier (BBB) breakdown occur in RTT and contribute to the disease-related cognitive impairment is still unknown. Interestingly, in symptomatic Mecp2-null (Mecp2-/y, Mecp2tm1.1Bird) mice, we found enhanced BBB permeability associated with an aberrant expression of the tight junction proteins Ocln and Cldn-5 in different brain areas, in terms of both transcript and protein levels. Additionally, Mecp2-null mice showed an altered expression of different genes encoding factors with a role in the BBB structure and function, such as Cldn3, Cldn12, Mpdz, Jam2, and Aqp4. With this study, we provide the first evidence of impaired BBB integrity in RTT and highlight a potential new molecular hallmark of the disease that might open new perspectives for the setting-up of novel therapeutic strategies.


Subject(s)
Rett Syndrome , Mice , Animals , Rett Syndrome/metabolism , Blood-Brain Barrier/metabolism , Brain/metabolism , Mice, Knockout , Mice, Inbred C57BL , Methyl-CpG-Binding Protein 2/genetics , Methyl-CpG-Binding Protein 2/metabolism
4.
BMC Genomics ; 24(1): 133, 2023 Mar 20.
Article in English | MEDLINE | ID: mdl-36941576

ABSTRACT

BACKGROUND: Green feed diet in ruminants exerts a beneficial effect on rumen metabolism and enhances the content of milk nutraceutical quality. At present, a comprehensive analysis focused on the identification of genes, and therefore, biological processes modulated by the green feed in buffalo rumen has never been reported. We performed RNA-sequencing in the rumen of buffaloes fed a total mixed ration (TMR) + the inclusion of 30% of ryegrass green feed (treated) or TMR (control), and identified differentially expressed genes (DEGs) using EdgeR and NOISeq tools. RESULTS: We found 155 DEGs using EdgeR (p-values < 0.05) and 61 DEGs using NOISeq (prob ≥0.8), 30 of which are shared. The rt-qPCR validation suggested a higher reliability of EdgeR results as compared with NOISeq data, in our biological context. Gene Ontology analysis of DEGs identified using EdgeR revealed that green feed modulates biological processes relevant for the rumen physiology and, then, health and well-being of buffaloes, such as lipid metabolism, response to the oxidative stress, immune response, and muscle structure and function. Accordingly, we found: (i) up-regulation of HSD17B13, LOC102410803 (or PSAT1) and HYKK, and down-regulation of CDO1, SELENBP1 and PEMT, encoding factors involved in energy, lipid and amino acid metabolism; (ii) enhanced expression of SIM2 and TRIM14, whose products are implicated in the immune response and defense against infections, and reduced expression of LOC112585166 (or SAAL1), ROR2, SMOC2, and S100A11, encoding pro-inflammatory factors; (iii) up-regulation of NUDT18, DNAJA4 and HSF4, whose products counteract stressful conditions, and down-regulation of LOC102396388 (or UGT1A9) and LOC102413340 (or MRP4/ABCC4), encoding detoxifying factors; (iv) increased expression of KCNK10, CACNG4, and ATP2B4, encoding proteins modulating Ca2+ homeostasis, and reduced expression of the cytoskeleton-related MYH11 and DES. CONCLUSION: Although statistically unpowered, this study suggests that green feed modulates the expression of genes involved in biological processes relevant for rumen functionality and physiology, and thus, for welfare and quality production in Italian Mediterranean dairy buffaloes. These findings, that need to be further confirmed through the validation of additional DEGs, allow to speculate a role of green feed in the production of nutraceutical molecules, whose levels might be enhanced also in milk.


Subject(s)
Buffaloes , Transcriptome , Animals , Female , Buffaloes/genetics , Animal Feed/analysis , Reproducibility of Results , Diet/veterinary , Milk/metabolism , Rumen/metabolism , Lactation , Fermentation
5.
Genome Res ; 33(2): 169-183, 2023 02.
Article in English | MEDLINE | ID: mdl-36828588

ABSTRACT

Bi-allelic hypomorphic mutations in DNMT3B disrupt DNA methyltransferase activity and lead to immunodeficiency, centromeric instability, facial anomalies syndrome, type 1 (ICF1). Although several ICF1 phenotypes have been linked to abnormally hypomethylated repetitive regions, the unique genomic regions responsible for the remaining disease phenotypes remain largely uncharacterized. Here we explored two ICF1 patient-derived induced pluripotent stem cells (iPSCs) and their CRISPR-Cas9-corrected clones to determine whether DNMT3B correction can globally overcome DNA methylation defects and related changes in the epigenome. Hypomethylated regions throughout the genome are highly comparable between ICF1 iPSCs carrying different DNMT3B variants, and significantly overlap with those in ICF1 patient peripheral blood and lymphoblastoid cell lines. These regions include large CpG island domains, as well as promoters and enhancers of several lineage-specific genes, in particular immune-related, suggesting that they are premarked during early development. CRISPR-corrected ICF1 iPSCs reveal that the majority of phenotype-related hypomethylated regions reacquire normal DNA methylation levels following editing. However, at the most severely hypomethylated regions in ICF1 iPSCs, which also display the highest increases in H3K4me3 levels and/or abnormal CTCF binding, the epigenetic memory persists, and hypomethylation remains uncorrected. Overall, we demonstrate that restoring the catalytic activity of DNMT3B can reverse the majority of the aberrant ICF1 epigenome. However, a small fraction of the genome is resilient to this rescue, highlighting the challenge of reverting disease states that are due to genome-wide epigenetic perturbations. Uncovering the basis for the persistent epigenetic memory will promote the development of strategies to overcome this obstacle.


Subject(s)
Induced Pluripotent Stem Cells , Induced Pluripotent Stem Cells/metabolism , Epigenome , Epigenetic Memory , Histones/metabolism , DNA Methylation , DNA (Cytosine-5-)-Methyltransferases/genetics
6.
Autophagy ; 19(4): 1087-1099, 2023 04.
Article in English | MEDLINE | ID: mdl-35998113

ABSTRACT

NPPA/atrial natriuretic peptide (natriuretic peptide type A) exerts critical pleiotropic effects in the cardiovascular system, limiting cardiomyocyte hypertrophy and death, reducing cardiac fibrosis and promoting vascular integrity. However, the molecular mechanisms underlying these beneficial effects still need to be clarified. We demonstrated for the first time that macroautophagy/autophagy is involved in the local protective effects of NPPA in cardiomyocytes (CMs), both in vitro and in vivo. Exogenous NPPA rapidly activates autophagy in CMs through NPR1/type A natriuretic peptide receptor and PRKG/protein kinase G signaling and also increases cardiac autophagy in mice. Remarkably, endogenous NPPA is secreted by CMs in response to glucose deprivation or hypoxia, thereby stimulating autophagy through autocrine/paracrine mechanisms. NPPA preserves cell viability and reduces hypertrophy in response to stress through autophagy activation. In vivo, we found that Nppa knockout mice undergoing ischemia-reperfusion (I/R) show increased infarct size and reduced autophagy. Reactivation of autophagy by Tat-Beclin D11 limits I/R injury. We also found that the protective effects of NPPA in reducing infarct size are abrogated in the presence of autophagy inhibition. Mechanistically, we found that NPPA stimulates autophagy through the activation of TFEB (transcription factor EB). Our data suggest that NPPA is a novel extracellular regulator of autophagy in the heart.


Subject(s)
Atrial Natriuretic Factor , Autophagy , Mice , Animals , Myocytes, Cardiac , Hypertrophy , Mice, Knockout
7.
Biomolecules ; 11(7)2021 06 30.
Article in English | MEDLINE | ID: mdl-34209228

ABSTRACT

Rett syndrome (RTT) is an extremely invalidating, cureless, developmental disorder, and it is considered one of the leading causes of intellectual disability in female individuals. The vast majority of RTT cases are caused by de novo mutations in the X-linked Methyl-CpG binding protein 2 (MECP2) gene, which encodes a multifunctional reader of methylated DNA. MeCP2 is a master epigenetic modulator of gene expression, with a role in the organization of global chromatin architecture. Based on its interaction with multiple molecular partners and the diverse epigenetic scenario, MeCP2 triggers several downstream mechanisms, also influencing the epigenetic context, and thus leading to transcriptional activation or repression. In this frame, it is conceivable that defects in such a multifaceted factor as MeCP2 lead to large-scale alterations of the epigenome, ranging from an unbalanced deposition of epigenetic modifications to a transcriptional alteration of both protein-coding and non-coding genes, with critical consequences on multiple downstream biological processes. In this review, we provide an overview of the current knowledge concerning the transcriptomic and epigenomic alterations found in RTT patients and animal models.


Subject(s)
Epigenesis, Genetic/genetics , Rett Syndrome/genetics , Transcriptome/genetics , Chromatin , DNA Methylation , Epigenomics/methods , Gene Expression/genetics , Histones/genetics , Humans , Methyl-CpG-Binding Protein 2/genetics , RNA, Untranslated/genetics , Rett Syndrome/metabolism , Rett Syndrome/physiopathology , Transcriptional Activation
8.
Sci Rep ; 11(1): 13802, 2021 07 05.
Article in English | MEDLINE | ID: mdl-34226608

ABSTRACT

ZFP57 is required to maintain the germline-marked differential methylation at imprinting control regions (ICRs) in mouse embryonic stem cells (ESCs). Although DNA methylation has a key role in genomic imprinting, several imprinted genes are controlled by different mechanisms, and a comprehensive study of the relationship between DMR methylation and imprinted gene expression is lacking. To address the latter issue, we differentiated wild-type and Zfp57-/- hybrid mouse ESCs into neural precursor cells (NPCs) and evaluated allelic expression of imprinted genes. In mutant NPCs, we observed a reduction of allelic bias of all the 32 genes that were imprinted in wild-type cells, demonstrating that ZFP57-dependent methylation is required for maintaining or acquiring imprinted gene expression during differentiation. Analysis of expression levels showed that imprinted genes expressed from the non-methylated chromosome were generally up-regulated, and those expressed from the methylated chromosome were down-regulated in mutant cells. However, expression levels of several imprinted genes acquiring biallelic expression were not affected, suggesting the existence of compensatory mechanisms that control their RNA level. Since neural differentiation was partially impaired in Zfp57-mutant cells, this study also indicates that imprinted genes and/or non-imprinted ZFP57-target genes are required for proper neurogenesis in cultured ESCs.


Subject(s)
DNA Methylation/genetics , Genomic Imprinting/genetics , Mouse Embryonic Stem Cells/metabolism , Repressor Proteins/genetics , Animals , Cell Differentiation/genetics , Chromosomes/genetics , Gene Expression Regulation, Developmental/genetics , Mice , Neural Stem Cells/metabolism
9.
Stem Cell Reports ; 15(6): 1317-1332, 2020 12 08.
Article in English | MEDLINE | ID: mdl-33296675

ABSTRACT

Methyl-CpG binding protein 2 (MeCP2) has historically been linked to heterochromatin organization, and in mouse cells it accumulates at pericentric heterochromatin (PCH), closely following major satellite (MajSat) DNA distribution. However, little is known about the specific function of MeCP2 in these regions. We describe the first evidence of a role in neurons for MeCP2 and MajSat forward (MajSat-fw) RNA in reciprocal targeting to PCH through their physical interaction. Moreover, MeCP2 contributes to maintenance of PCH by promoting deposition of H3K9me3 and H4K20me3. We highlight that the MeCP2B isoform is required for correct higher-order PCH organization, and underline involvement of the methyl-binding and transcriptional repression domains. The T158 residue, which is commonly mutated in Rett patients, is directly involved in this process. Our findings support the hypothesis that MeCP2 and the MajSat-fw transcript are mutually dependent for PCH organization, and contribute to clarify MeCP2 function in the regulation of chromatin architecture.


Subject(s)
DNA, Satellite/metabolism , Heterochromatin/metabolism , Histones/metabolism , Methyl-CpG-Binding Protein 2/metabolism , Mouse Embryonic Stem Cells/metabolism , Animals , DNA, Satellite/genetics , Heterochromatin/genetics , Histones/genetics , Methyl-CpG-Binding Protein 2/genetics , Mice
10.
Genes (Basel) ; 11(6)2020 05 28.
Article in English | MEDLINE | ID: mdl-32481609

ABSTRACT

Pericentric heterochromatin (PCH) is a particular form of constitutive heterochromatin that is localized to both sides of centromeres and that forms silent compartments enriched in repressive marks. These genomic regions contain species-specific repetitive satellite DNA that differs in terms of nucleotide sequences and repeat lengths. In spite of this sequence diversity, PCH is involved in many biological phenomena that are conserved among species, including centromere function, the preservation of genome integrity, the suppression of spurious recombination during meiosis, and the organization of genomic silent compartments in the nucleus. PCH organization and maintenance of its repressive state is tightly regulated by a plethora of factors, including enzymes (e.g., DNA methyltransferases, histone deacetylases, and histone methyltransferases), DNA and histone methylation binding factors (e.g., MECP2 and HP1), chromatin remodeling proteins (e.g., ATRX and DAXX), and non-coding RNAs. This evidence helps us to understand how PCH organization is crucial for genome integrity. It then follows that alterations to the molecular signature of PCH might contribute to the onset of many genetic pathologies and to cancer progression. Here, we describe the most recent updates on the molecular mechanisms known to underlie PCH organization and function.


Subject(s)
Centromere/genetics , DNA Methylation/genetics , Heterochromatin/genetics , Histones/genetics , Animals , Chromatin Assembly and Disassembly/genetics , Epigenesis, Genetic/genetics , Histone Deacetylases/genetics , Histone Methyltransferases , Humans , Mammals
11.
Int J Mol Sci ; 20(21)2019 Oct 29.
Article in English | MEDLINE | ID: mdl-31671722

ABSTRACT

Methyl-CpG binding protein 2 (MeCP2) is a multi-function factor involved in locus-specific transcriptional modulation and the regulation of genome architecture, e.g., pericentric heterochromatin (PCH) organization. MECP2 mutations are responsible for Rett syndrome (RTT), a devastating postnatal neurodevelopmental disorder, the pathogenetic mechanisms of which are still unknown. MeCP2, together with Alpha-thalassemia/mental retardation syndrome X-linked protein (ATRX), accumulates at chromocenters, which are repressive PCH domains. As with MECP2, mutations in ATRX cause ATR-X syndrome which is associated with severe intellectual disability. We exploited two murine embryonic stem cell lines, in which the expression of MeCP2 or ATRX is abolished. Through immunostaining, chromatin immunoprecipitation and western blot, we show that MeCP2 and ATRX are reciprocally dependent both for their expression and targeting to chromocenters. Moreover, ATRX plays a role in the accumulation of members of the heterochromatin protein 1 (HP1) family at PCH and, as MeCP2, modulates their expression. Furthermore, ATRX and HP1 targeting to chromocenters depends on an RNA component. 3D-DNA fluorescence in situ hybridization (FISH) highlighted, for the first time, a contribution of ATRX in MeCP2-mediated chromocenter clustering during neural differentiation. Overall, we provide a detailed dissection of the functional interplay between MeCP2 and ATRX in higher-order PCH organization in neurons. Our findings suggest molecular defects common to RTT and ATR-X syndrome, including an alteration in PCH.


Subject(s)
Cell Differentiation/physiology , Heterochromatin/metabolism , Methyl-CpG-Binding Protein 2/metabolism , Neurons/metabolism , X-linked Nuclear Protein/metabolism , Animals , Cell Differentiation/genetics , Chromobox Protein Homolog 5 , Chromosomal Proteins, Non-Histone/genetics , Chromosomal Proteins, Non-Histone/metabolism , Disease Models, Animal , Embryonic Stem Cells , Gene Expression Regulation , Gene Knockout Techniques , Heterochromatin/chemistry , Heterochromatin/genetics , In Situ Hybridization, Fluorescence , Intellectual Disability/genetics , Mental Retardation, X-Linked/genetics , Methyl-CpG-Binding Protein 2/genetics , Mice , Mutation , Rett Syndrome/genetics , X-linked Nuclear Protein/chemistry , X-linked Nuclear Protein/genetics , alpha-Thalassemia/genetics
12.
EMBO J ; 37(7)2018 04 03.
Article in English | MEDLINE | ID: mdl-29282205

ABSTRACT

Neural development is accomplished by differentiation events leading to metabolic reprogramming. Glycosphingolipid metabolism is reprogrammed during neural development with a switch from globo- to ganglio-series glycosphingolipid production. Failure to execute this glycosphingolipid switch leads to neurodevelopmental disorders in humans, indicating that glycosphingolipids are key players in this process. Nevertheless, both the molecular mechanisms that control the glycosphingolipid switch and its function in neurodevelopment are poorly understood. Here, we describe a self-contained circuit that controls glycosphingolipid reprogramming and neural differentiation. We find that globo-series glycosphingolipids repress the epigenetic regulator of neuronal gene expression AUTS2. AUTS2 in turn binds and activates the promoter of the first and rate-limiting ganglioside-producing enzyme GM3 synthase, thus fostering the synthesis of gangliosides. By this mechanism, the globo-AUTS2 axis controls glycosphingolipid reprogramming and neural gene expression during neural differentiation, which involves this circuit in neurodevelopment and its defects in neuropathology.


Subject(s)
Cell Differentiation/physiology , Cellular Reprogramming/physiology , Glycosphingolipids/metabolism , Neurogenesis/physiology , Cell Differentiation/drug effects , Cell Differentiation/genetics , Cellular Reprogramming/drug effects , Cytoskeletal Proteins , Epigenomics , Gangliosides/metabolism , Gene Expression , Gene Silencing , Glycosphingolipids/pharmacology , HeLa Cells , Histones/metabolism , Humans , Neurodevelopmental Disorders , Neurogenesis/drug effects , Neurogenesis/genetics , Neurons/metabolism , Promoter Regions, Genetic/drug effects , Proteins/genetics , Proteins/metabolism , Sialyltransferases/genetics , Sialyltransferases/metabolism , Transcription Factors
13.
Cell Death Dis ; 8(6): e2891, 2017 06 22.
Article in English | MEDLINE | ID: mdl-28640254

ABSTRACT

UCP2 maps nearby the lod score peak of STR1-stroke QTL in the SHRSP rat strain. We explored the potential contribution of UCP2 to the high-salt diet (JD)-dependent increased stroke susceptibility of SHRSP. Male SHRSP, SHRSR, two reciprocal SHRSR/SHRSP-STR1/QTL stroke congenic lines received JD for 4 weeks to detect brain UCP2 gene/protein modulation as compared with regular diet (RD). Brains were also analyzed for NF-κB protein expression, oxidative stress level and UCP2-targeted microRNAs expression level. Next, based on knowledge that fenofibrate and Brassica Oleracea (BO) stimulate UCP2 expression through PPARα activation, we monitored stroke occurrence in SHRSP receiving JD plus fenofibrate versus vehicle, JD plus BO juice versus BO juice plus PPARα inhibitor. Brain UCP2 expression was markedly reduced by JD in SHRSP and in the (SHRsr.SHRsp-(D1Rat134-Mt1pa)) congenic line, whereas NF-κB expression and oxidative stress level increased. The opposite phenomenon was observed in the SHRSR and in the (SHRsp.SHRsr-(D1Rat134-Mt1pa)) reciprocal congenic line. Interestingly, the UCP2-targeted rno-microRNA-503 was significantly upregulated in SHRSP and decreased in SHRSR upon JD, with consistent changes in the two reciprocal congenic lines. Both fenofibrate and BO significantly decreased brain microRNA-503 level, upregulated UCP2 expression and protected SHRSP from stroke occurrence. In vitro overexpression of microRNA-503 in endothelial cells suppressed UCP2 expression and led to a significant increase of cell mortality with decreased cell viability. Brain UCP2 downregulation is a determinant of increased stroke predisposition in high-salt-fed SHRSP. In this context, UCP2 can be modulated by both pharmacological and nutraceutical agents. The microRNA-503 significantly contributes to mediate brain UCP2 downregulation in JD-fed SHRSP.


Subject(s)
Brain/metabolism , Gene Expression Regulation , MicroRNAs/metabolism , Stroke/genetics , Uncoupling Protein 2/genetics , Animals , Brain/pathology , Brassica/chemistry , Cell Survival , Disease Susceptibility , Fenofibrate/administration & dosage , Fenofibrate/pharmacology , Gene Expression Regulation/drug effects , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Male , NF-kappa B/metabolism , Oxidative Stress/drug effects , Rats, Inbred SHR , Sodium Chloride, Dietary , Stroke/pathology , Uncoupling Protein 2/metabolism
14.
Brief Funct Genomics ; 15(6): 420-431, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27296483

ABSTRACT

It has been a long trip from 1992, the year of the discovery of MECP2, to the present day. What is surprising is that some of the pivotal roles of MeCP2 were already postulated at that time, such as repression of inappropriate expression from repetitive elements and the regulation of pericentric heterochromatin condensation. However, MeCP2 performs many more functions. MeCP2 is a reader of epigenetic information contained in methylated (and hydroxymethylated) DNA, moving from the 'classical' CpG doublet to the more complex view addressed by the non-CpG methylation, which is a feature of the postnatal brain. MECP2 is a transcriptional repressor, although when it forms complexes with the appropriate molecules, it can become a transcriptional activator. For all of these aspects, Rett syndrome, which is caused by MECP2 mutations, is considered a paradigmatic example of a 'chromatin disorder'. Even if the hunt for bona-fide MECP2 target genes is far from concluded today, the role of MeCP2 in the maintenance of chromatin architecture appears to be clearly established. Taking a cue from the non-scientific literature, we can firmly attest that MeCP2 is a player with 'a great future behind it'*.*V. Gassmann 'Un grande avvenire dietro le spalle'. TEA Eds.


Subject(s)
Chromatin/chemistry , Chromatin/genetics , Methyl-CpG-Binding Protein 2/genetics , Rett Syndrome/genetics , Animals , DNA Methylation , Humans , Methyl-CpG-Binding Protein 2/metabolism , Mutation
SELECTION OF CITATIONS
SEARCH DETAIL
...