Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
2.
Water Res ; 239: 120028, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37209512

ABSTRACT

PFAS are biologically recalcitrant compounds that are persistent in the environment and have subsequently contaminated groundwater, landfill leachate and surface water. Due to their persistence and toxicity, there are environmental concentration limits imposed on some PFAS compounds that extend down to a few nanograms per litre and even proposals for reducing these to picogram per litre levels. Since PFAS concentrates at water-air interfaces as a result of their amphiphilic nature, this characteristic is important for the successful modelling and prediction of transport behaviour of PFAS through various systems. Here we present a procedure for using a foam fractionation method to experimentally determine the PFAS adsorption behaviour at ng/L and µg/L concentrations in the presence of salts. The equilibrium air-water adsorption coefficients for PFHxS and PFOA at different salinities and concentrations are experimentally shown to be constant across the range of PFAS concentrations investigated (approx. 0.1-100 µg/L). The adsorption isotherms may consequently be modelled by Henry or Langmuir style equations at these low concentrations.


Subject(s)
Fluorocarbons , Groundwater , Water Pollutants, Chemical , Water , Adsorption , Fluorocarbons/analysis , Water Pollutants, Chemical/analysis
3.
Water Res ; 230: 119532, 2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36584659

ABSTRACT

Per- and poly-fluoroalkyl substances (PFAS) are recalcitrant, synthetic chemicals that are ubiquitous in the environment because of their widespread use in a variety of consumer and industrial products. PFAS contamination has become an increasing issue in recent years, which needs to be urgently addressed. Foam fractionation is emerging as a potential remediation option that removes PFAS by adsorption to the surface of rising air bubbles which are removed from the system as a foam. PFAS concentrations in the environment are often not sufficient to allow for formation of a foam by itself and often a co-foaming agent is required to be added to enhance the foamability of the solution. In this study, the effect of different classes of co-foaming agents, anionic, non-ionic, zwitterionic and cationic surfactants on the removal of PFAS with varying fluorocarbon chain length from 3 to 8 in a foam fractionation process have been investigated. Evaluation of the air-water interface partitioning coefficient (k') in addition with surface tension and PFAS removal results support the contention that using a co-foaming agent with the opposite charge to the PFAS in question significantly facilitates the adsorption of PFAS to the air-water interface, enhancing the efficiency of the process. Using the non-ionic surfactant (no headgroup electrostatic interaction with PFAS), as a reference, it was observed, in terms of PFAS separation and rate of PFAS removal, that anionic co-surfactant performed worst, zwitterionic was better, and cationic co-surfactant performed best. All of the PFAS species were able to be removed below the limit of detection (0.05 µg/L) after 45 minutes of foaming time with the cationic surfactant.


Subject(s)
Fluorocarbons , Surface-Active Agents , Surface-Active Agents/chemistry , Adsorption , Water , Static Electricity
4.
Adv Colloid Interface Sci ; 301: 102606, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35182930

ABSTRACT

Pickering foams are available in many applications and have been continually gaining interest in the last two decades. Pickering foams are multifaceted, and their characteristics are highly dependent on many factors, such as particle size, charge, hydrophobicity and concentration as well as the charge and concentration of surfactants and salts available in the system. A literature review of these individual studies at first might seem confusing and somewhat contradictory, particularly in multi-component systems with particles and surfactants with different charges in the presence of salts. This paper provides a comprehensive overview of particle-stabilized foams, also known as Pickering foams and froths. Underlying mechanisms of foam stabilization by particles with different morphology, surface chemistry, size and type are reviewed and clarified. This paper also outlines the role of salts and different factors such as pH, temperature and gas type on Pickering foams. Further, we highlight recent developments in Pickering foams in different applications such as food, mining, oil and gas, and wastewater treatment industries, where Pickering foams are abundant. We conclude this overview by presenting important research avenues based on the gaps identified here. The focus of this review is limited to Pickering foams of surfactants with added salts and does not include studies on polymers, proteins, or other macromolecules.


Subject(s)
Polymers , Surface-Active Agents , Aerosols , Emulsions/chemistry , Particle Size , Surface-Active Agents/chemistry
5.
Adv Colloid Interface Sci ; 295: 102490, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34385000

ABSTRACT

Surfactant-stabilized foams have been at the centre of scientific research for over a century due to their ubiquitous applications in different industries. Many of these applications involve inorganic salts either due to their natural presence (e.g. use of seawater in froth floatation) or their addition (e.g. in cosmetics) to manipulate foam characteristics for the best outcomes. This paper provides a clear understanding of the effect of salts on surfactant-stabilized foams through a critical literature survey of this topic. Available literature shows a double effect of salts (LiCl, NaCl and KCl) on foam characteristics in the presence of surfactants. To elucidate the underlying mechanisms of the stabilizing effect of salts on foams, the effect of salts on surfactant-free thin liquid films is first discussed, followed by a discussion on the effect of salts on surfactant-stabilized foams with the focus on anionic surfactants. We discuss two distinctive salt concentrations, salt transition concentration in surfactant-free solutions and salt critical concentration in surfactant-laden systems to explain their effects. Using the available data in literature supported by dedicated experiments, we demonstrate the destabilizing effect of salts on foams at and above their critical concentrations in the presence of anionic surfactants. This effect is attributed to retarding the adsorption of the surfactant molecules at the interface due to the formation of nano and micro-scale aggregates.

6.
Adv Colloid Interface Sci ; 268: 82-90, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30954719

ABSTRACT

The stability of water films has been the focus of many researchers in the recent decades. Unfortunately, there is no consensus on the stability of these foam films or on the mechanisms responsible for stabilizing water films. This paper examines the reported results on this matter and scrutinizes them based on speciation analysis of the dissolved species and the recent achievements in the adsorption of inorganic ions on the air/water interface. Our results confirm the key role of surface contamination, interface approach velocity and evaporation in the drainage and lifetime of these water films. It confirms the stabilizing effect of contamination and the destabilizing effect of air-water interface approach velocity. Moreover, the negative sign of the surface/zeta potential of the air/water interface and its dependence on the pH value were explained.

7.
Phys Chem Chem Phys ; 17(32): 20502-7, 2015 Aug 28.
Article in English | MEDLINE | ID: mdl-26171587

ABSTRACT

Nano bubbles and films are important in theory and various applications, such as the specific ion effect of bubble coalescence, flotation and porous medium seepage; these rely greatly on the fundamental aspects of extended-DLVO surface forces. However, the origin and validation of the non-DLVO forces are still obscure, especially at the nano scale (1-5 nm). Herein, we report the first determination of the disjoining pressures of aqueous electrolyte nano-films using molecular dynamics (MD) simulations. Our results showed that adding salt does not lead to a decrease in the disjoining pressure. On the contrary, higher concentrations results in greater disjoining pressures. In addition, the temperature was found to significantly change the pattern of the disjoining pressure isotherm. These results aid the understanding of a number of underlying mechanisms, involving nano solid-liquid-gas surfaces.

8.
Adv Colloid Interface Sci ; 222: 305-18, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25109881

ABSTRACT

Some salts have been proven to inhibit bubble coalescence above a certain concentration called the transition concentration. The transition concentration of salts has been investigated and determined by using different techniques. Different mechanisms have also been proposed to explain the stabilizing effect of salts on bubble coalescence. However, as yet there is no consensus on a mechanism which can explain the stabilizing effect of all inhibiting salts. This paper critically reviews the experimental techniques and mechanisms for the coalescence of bubbles in saline solutions. The transition concentrations of NaCl, as the most popularly used salt, determined by using different techniques such as bubble swarm, bubble pairs, and thin liquid film micro-interferometry were analyzed and compared. For a consistent comparison, the concept of TC95 was defined as a salt concentration at which the "percentage coalescence" of bubbles reduces by 95% relative to the highest (100% in pure water) and lowest (in high-salt concentration) levels. The results show a linear relationship between the TC95 of NaCl and the reciprocal of the square root of the bubble radius. This relationship holds despite different experimental techniques, salt purities and bubble approach speeds, and highlights the importance of the bubble size in bubble coalescence. The available theoretical models for inhibiting effect of salts have also been reviewed. The failure of these models in predicting the salt transition concentration commands further theoretical development for a better understanding of bubble coalescence in salt solutions.

SELECTION OF CITATIONS
SEARCH DETAIL
...