Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 62
Filter
1.
Med Genet ; 36(1): 59-73, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38835967

ABSTRACT

The identification of recurrent genomic alterations in tumour cells has a significant role in the classification of mature B- and T-cell lymphomas. Following the development of new technologies, such as next generation sequencing and the improvement of classical technologies such as conventional and molecular cytogenetics, a huge catalogue of genomic alterations in lymphoid neoplasms has been established. These alterations are relevant to refine the taxonomy of the classification of lymphomas, to scrutinize the differential diagnosis within different lymphoma entities and to help assessing the prognosis and clinical management of the patients. Consequently, here we describe the key genetic alterations relevant in mature B- and T-cell lymphomas.

2.
Semin Liver Dis ; 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38806158

ABSTRACT

Metabolic dysfunction-associated steatotic liver disease (MASLD) is a prevalent condition with a broad spectrum defined by liver biopsy. This gold standard method evaluates three features: steatosis, activity (ballooning and lobular inflammation), and fibrosis, attributing them to certain grades or stages using a semiquantitative scoring system. However, liver biopsy is subject to numerous restrictions, creating an unmet need for a reliable and reproducible method for MASLD assessment, grading, and staging. Noninvasive imaging modalities, such as magnetic resonance imaging (MRI), offer the potential to assess quantitative liver parameters. This review aims to provide an overview of the available MRI techniques for the three criteria evaluated individually by liver histology. Here, we discuss the possibility of combining multiple MRI parameters to replace liver biopsy with a holistic, multiparametric MRI protocol. In conclusion, the development and implementation of such an approach could significantly improve the diagnosis and management of MASLD, reducing the need for invasive procedures and paving the way for more personalized treatment strategies.

3.
Leukemia ; 38(5): 1086-1098, 2024 May.
Article in English | MEDLINE | ID: mdl-38600314

ABSTRACT

Blastic plasmacytoid dendritic cell neoplasm (BPDCN) constitutes a rare and aggressive malignancy originating from plasmacytoid dendritic cells (pDCs) with a primarily cutaneous tropism followed by dissemination to the bone marrow and other organs. We conducted a genome-wide analysis of the tumor methylome in an extended cohort of 45 BPDCN patients supplemented by WES and RNA-seq as well as ATAC-seq on selected cases. We determined the BPDCN DNA methylation profile and observed a dramatic loss of DNA methylation during malignant transformation from early and mature DCs towards BPDCN. DNA methylation profiles further differentiate between BPDCN, AML, CMML, and T-ALL exhibiting the most striking global demethylation, mitotic stress, and merely localized DNA hypermethylation in BPDCN resulting in pronounced inactivation of tumor suppressor genes by comparison. DNA methylation-based analysis of the tumor microenvironment by MethylCIBERSORT yielded two, prognostically relevant clusters (IC1 and IC2) with specific cellular composition and mutational spectra. Further, the transcriptional subgroups of BPDCN (C1 and C2) differ by DNA methylation signatures in interleukin/inflammatory signaling genes but also by higher transcription factor activity of JAK-STAT and NFkB signaling in C2 in contrast to an EZH2 dependence in C1-BPDCN. Our integrative characterization of BPDCN offers novel molecular insights and potential diagnostic applications.


Subject(s)
DNA Methylation , Dendritic Cells , Humans , Dendritic Cells/pathology , Dendritic Cells/metabolism , Female , Male , Middle Aged , Hematologic Neoplasms/genetics , Hematologic Neoplasms/pathology , Tumor Microenvironment/genetics , Aged , Adult , Prognosis , Gene Expression Regulation, Neoplastic , Mutation , Biomarkers, Tumor/genetics
4.
Magn Reson Med ; 92(1): 257-268, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38282291

ABSTRACT

PURPOSE: Free water in cortical bone is either contained in nearly cylindrical structures (mainly Haversian canals oriented parallel to the bone axis) or in more spherically shaped pores (lacunae). Those cavities have been reported to crucially influence bone quality and mechanical stability. Susceptibility differences between bone and water can lead to water frequency shifts dependent on the geometric characteristics. The purpose of this study is to calculate and measure the frequency distribution of the water signal in MRI in dependence of the microscopic bone geometry. METHODS: Finite element modeling and analytical approaches were performed to characterize the free water components of bone. The previously introduced UTE-FID technique providing spatially resolved FID-spectra was used to measure the frequency distribution pixel-wise for different orientations of the bone axis. RESULTS: The frequency difference between free water in spherical pores and in canals parallel to B0 amounts up to approximately 100 Hz at 3T. Simulated resonance frequencies showed good agreement with the findings in UTE-FID spectra. The intensity ratio of the two signal components (parallel canals and spherical pores) was found to vary between periosteal and endosteal regions. CONCLUSION: Spatially resolved UTE-FID examinations allow the determination of the frequency distribution of signals from free water in cortical bone. This frequency distribution indicates the composition of the signal contributions from nearly spherical cavities and cylindrical canals which allows for further characterization of bone structure and status.


Subject(s)
Body Water , Computer Simulation , Magnetic Resonance Imaging , Humans , Magnetic Resonance Imaging/methods , Body Water/diagnostic imaging , Algorithms , Reproducibility of Results , Models, Biological , Sensitivity and Specificity , Image Interpretation, Computer-Assisted/methods , Water/chemistry , Bone and Bones/diagnostic imaging , Image Enhancement/methods , Finite Element Analysis
5.
Nat Commun ; 14(1): 8081, 2023 Dec 06.
Article in English | MEDLINE | ID: mdl-38057307

ABSTRACT

In high-income countries, mosaic chromosomal alterations in peripheral blood leukocytes are associated with an elevated risk of adverse health outcomes, including hematologic malignancies. We investigate mosaic chromosomal alterations in sub-Saharan Africa among 931 children with Burkitt lymphoma, an aggressive lymphoma commonly characterized by immunoglobulin-MYC chromosomal rearrangements, 3822 Burkitt lymphoma-free children, and 674 cancer-free men from Ghana. We find autosomal and X chromosome mosaic chromosomal alterations in 3.4% and 1.7% of Burkitt lymphoma-free children, and 8.4% and 3.7% of children with Burkitt lymphoma (P-values = 5.7×10-11 and 3.74×10-2, respectively). Autosomal mosaic chromosomal alterations are detected in 14.0% of Ghanaian men and increase with age. Mosaic chromosomal alterations in Burkitt lymphoma cases include gains on chromosomes 1q and 8, the latter spanning MYC, while mosaic chromosomal alterations in Burkitt lymphoma-free children include copy-neutral loss of heterozygosity on chromosomes 10, 14, and 16. Our results highlight mosaic chromosomal alterations in sub-Saharan African populations as a promising area of research.


Subject(s)
Burkitt Lymphoma , Male , Child , Humans , Burkitt Lymphoma/genetics , Burkitt Lymphoma/pathology , Ghana , Chromosome Aberrations , Leukocytes/pathology , Immunoglobulins/genetics , Translocation, Genetic
6.
Nat Commun ; 14(1): 6947, 2023 11 07.
Article in English | MEDLINE | ID: mdl-37935654

ABSTRACT

Disease-causing mutations in genes encoding transcription factors (TFs) can affect TF interactions with their cognate DNA-binding motifs. Whether and how TF mutations impact upon the binding to TF composite elements (CE) and the interaction with other TFs is unclear. Here, we report a distinct mechanism of TF alteration in human lymphomas with perturbed B cell identity, in particular classic Hodgkin lymphoma. It is caused by a recurrent somatic missense mutation c.295 T > C (p.Cys99Arg; p.C99R) targeting the center of the DNA-binding domain of Interferon Regulatory Factor 4 (IRF4), a key TF in immune cells. IRF4-C99R fundamentally alters IRF4 DNA-binding, with loss-of-binding to canonical IRF motifs and neomorphic gain-of-binding to canonical and non-canonical IRF CEs. IRF4-C99R thoroughly modifies IRF4 function by blocking IRF4-dependent plasma cell induction, and up-regulates disease-specific genes in a non-canonical Activator Protein-1 (AP-1)-IRF-CE (AICE)-dependent manner. Our data explain how a single mutation causes a complex switch of TF specificity and gene regulation and open the perspective to specifically block the neomorphic DNA-binding activities of a mutant TF.


Subject(s)
Interferon Regulatory Factors , Lymphoma , Humans , B-Lymphocytes/metabolism , DNA , Gene Expression Regulation , Interferon Regulatory Factors/genetics , Interferon Regulatory Factors/metabolism , Lymphoma/genetics
7.
Blood ; 142(25): 2175-2191, 2023 12 21.
Article in English | MEDLINE | ID: mdl-37756525

ABSTRACT

ABSTRACT: Growth factor independence 1 (GFI1) is a DNA-binding transcription factor and a key regulator of hematopoiesis. GFI1-36N is a germ line variant, causing a change of serine (S) to asparagine (N) at position 36. We previously reported that the GFI1-36N allele has a prevalence of 10% to 15% among patients with acute myeloid leukemia (AML) and 5% to 7% among healthy Caucasians and promotes the development of this disease. Using a multiomics approach, we show here that GFI1-36N expression is associated with increased frequencies of chromosomal aberrations, mutational burden, and mutational signatures in both murine and human AML and impedes homologous recombination (HR)-directed DNA repair in leukemic cells. GFI1-36N exhibits impaired binding to N-Myc downstream-regulated gene 1 (Ndrg1) regulatory elements, causing decreased NDRG1 levels, which leads to a reduction of O6-methylguanine-DNA-methyltransferase (MGMT) expression levels, as illustrated by both transcriptome and proteome analyses. Targeting MGMT via temozolomide, a DNA alkylating drug, and HR via olaparib, a poly-ADP ribose polymerase 1 inhibitor, caused synthetic lethality in human and murine AML samples expressing GFI1-36N, whereas the effects were insignificant in nonmalignant GFI1-36S or GFI1-36N cells. In addition, mice that received transplantation with GFI1-36N leukemic cells treated with a combination of temozolomide and olaparib had significantly longer AML-free survival than mice that received transplantation with GFI1-36S leukemic cells. This suggests that reduced MGMT expression leaves GFI1-36N leukemic cells particularly vulnerable to DNA damage initiating chemotherapeutics. Our data provide critical insights into novel options to treat patients with AML carrying the GFI1-36N variant.


Subject(s)
DNA-Binding Proteins , Leukemia, Myeloid, Acute , Humans , Mice , Animals , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Temozolomide , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , DNA Damage , DNA Repair , Germ Cells/metabolism , DNA , Transcription Factors/genetics
8.
Leuk Res ; 133: 107377, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37647808

ABSTRACT

Breast implant-associated anaplastic large cell lymphoma (BIA-ALCL) is a mature, CD30-positive T-cell lymphoma lacking expression of the anaplastic lymphoma kinase (ALK). In contrast to ALK-positive ALCL, BIA-ALCL cells express cyclin D2 (CCND2) which controls cyclin dependent kinases 4 and 6 (CDK4/6). DNA methylation and expression analyses performed with cell lines and primary cells suggest that the expression of CCND2 in BIA-ALCL cell lines conforms to the physiological status of differentiated T-cells, and that it is not the consequence of genomic alterations as observed in other hematopoietic tumors. Using cell line model systems we show that treatment with the CDK4/6 inhibitor palbociclib effects dephosphorylation of the retinoblastoma protein (RB) and causes cell cycle arrest in G1 in BIA-ALCL. Moreover, we show that the PI3K/AKT inhibitor BEZ-235 induces dephosphorylation of the mTORC1 target S6 and of GSK3ß, indicators for translational inhibition and proteasomal degradation. Consequently, CCND2 protein levels declined after stimulation with BEZ-235, RB was dephosphorylated and the cell cycle was arrested in G1. Taken together, our data imply potential application of CDK4/6 inhibitors and PI3K/AKT inhibitors for the therapy of BIA-ALCL.

9.
J Pathol ; 261(2): 139-155, 2023 10.
Article in English | MEDLINE | ID: mdl-37555362

ABSTRACT

Within the pancreas, Keratin 19 (KRT19) labels the ductal lineage and is a determinant of pancreatic ductal adenocarcinoma (PDAC). To investigate KRT19 expression dynamics, we developed a human pluripotent stem cell (PSC)-based KRT19-mCherry reporter system in different genetic backgrounds to monitor KRT19 expression from its endogenous gene locus. A differentiation protocol to generate mature pancreatic duct-like organoids was applied. While KRT19/mCherry expression became evident at the early endoderm stage, mCherry signal was present in nearly all cells at the pancreatic endoderm (PE) and pancreatic progenitor (PP) stages. Interestingly, despite homogenous KRT19 expression, mCherry positivity dropped to 50% after ductal maturation, indicating a permanent switch from biallelic to monoallelic expression. DNA methylation profiling separated the distinct differentiation intermediates, with site-specific DNA methylation patterns occurring at the KRT19 locus during ductal maturation. Accordingly, the monoallelic switch was partially reverted upon treatment with a DNA-methyltransferase inhibitor. In human PDAC cohorts, high KRT19 levels correlate with low locus methylation and decreased survival. At the same time, activation of oncogenic KRASG12D signalling in our reporter system reversed monoallelic back to biallelic KRT19 expression in pancreatic duct-like organoids. Allelic reactivation was also detected in single-cell transcriptomes of human PDACs, which further revealed a positive correlation between KRT19 and KRAS expression. Accordingly, KRAS mutant PDACs had higher KRT19 mRNA but lower KRT19 gene locus DNA methylation than wildtype counterparts. KRT19 protein was additionally detected in plasma of PDAC patients, with higher concentrations correlating with shorter progression-free survival in gemcitabine/nabPaclitaxel-treated and opposing trends in FOLFIRINOX-treated patients. Apart from being an important pancreatic ductal lineage marker, KRT19 appears tightly controlled via a switch from biallelic to monoallelic expression during ductal lineage entry and is aberrantly expressed after oncogenic KRASG12D expression, indicating a role in PDAC development and malignancy. Soluble KRT19 might serve as a relevant biomarker to stratify treatment. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Humans , Pancreatic Neoplasms/pathology , Antineoplastic Combined Chemotherapy Protocols , Keratin-19/genetics , Keratin-19/metabolism , DNA Methylation , Proto-Oncogene Proteins p21(ras)/genetics , Carcinogenesis/genetics , Carcinoma, Pancreatic Ductal/pathology , Gene Expression , Pancreatic Neoplasms
11.
Cell Genom ; 3(3): 100276, 2023 Mar 08.
Article in English | MEDLINE | ID: mdl-36950387

ABSTRACT

In contrast to mono- or biallelic loss of tumor-suppressor function, effects of discrete gene dysregulations, as caused by non-coding (epi)genome alterations, are poorly understood. Here, by perturbing the regulatory genome in mice, we uncover pervasive roles of subtle gene expression variation in cancer evolution. Genome-wide screens characterizing 1,450 tumors revealed that such quasi-insufficiency is extensive across entities and displays diverse context dependencies, such as distinct cell-of-origin associations in T-ALL subtypes. We compile catalogs of non-coding regions linked to quasi-insufficiency, show their enrichment with human cancer risk variants, and provide functional insights by engineering regulatory alterations in mice. As such, kilo-/megabase deletions in a Bcl11b-linked non-coding region triggered aggressive malignancies, with allele-specific tumor spectra reflecting gradual gene dysregulations through modular and cell-type-specific enhancer activities. Our study constitutes a first survey toward a systems-level understanding of quasi-insufficiency in cancer and gives multifaceted insights into tumor evolution and the tissue-specific effects of non-coding mutations.

12.
Nucleic Acids Res ; 51(4): e21, 2023 02 28.
Article in English | MEDLINE | ID: mdl-36617985

ABSTRACT

Transposon screens are powerful in vivo assays used to identify loci driving carcinogenesis. These loci are identified as Common Insertion Sites (CISs), i.e. regions with more transposon insertions than expected by chance. However, the identification of CISs is affected by biases in the insertion behaviour of transposon systems. Here, we introduce Transmicron, a novel method that differs from previous methods by (i) modelling neutral insertion rates based on chromatin accessibility, transcriptional activity and sequence context and (ii) estimating oncogenic selection for each genomic region using Poisson regression to model insertion counts while controlling for neutral insertion rates. To assess the benefits of our approach, we generated a dataset applying two different transposon systems under comparable conditions. Benchmarking for enrichment of known cancer genes showed improved performance of Transmicron against state-of-the-art methods. Modelling neutral insertion rates allowed for better control of false positives and stronger agreement of the results between transposon systems. Moreover, using Poisson regression to consider intra-sample and inter-sample information proved beneficial in small and moderately-sized datasets. Transmicron is open-source and freely available. Overall, this study contributes to the understanding of transposon biology and introduces a novel approach to use this knowledge for discovering cancer driver genes.


Subject(s)
DNA Transposable Elements , Neoplasms , Software , Humans , Base Sequence , Carcinogenesis , Mutagenesis, Insertional , Oncogenes , Neoplasms/genetics
13.
Toxicol In Vitro ; 88: 105557, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36681289

ABSTRACT

Under the current EU chemicals legislation, in vitro test methods became the preferred methods to identify and classify the skin irritation potential of chemicals and mixtures. Among these, especially in vitro skin models are widely used. For surfactants, a well-known group of typically irritating chemicals, it is a long-standing experience that the irritation potential of a mixture of surfactants is typically lower than the irritation potential of the single surfactants, an effect usually described as surfactant antagonism. In order to evaluate if this effect can be observed in skin model systems as well, the irritation potential of the surfactants and of their mixtures was determined in the Open Source Reconstructed Epidermis (OS-REp) models. Combinations of sodium dodecyl sulfate or linear alkylbenzene sulfonate with cocoamidopropyl betain and alkyl polyglycosid, respectively, resulted in a clear decrease of the irritation potential compared to the irritation exerted by the single surfactants. The effect appeared to be primarily driven by the mixture's lower ability to damage the skin model's barrier, as shown by a reduced fluorescein permeation.


Subject(s)
Pulmonary Surfactants , Surface-Active Agents , Surface-Active Agents/toxicity , Epidermis , Skin , Sodium Dodecyl Sulfate/toxicity , Epidermal Cells , Irritants/toxicity , Skin Irritancy Tests
14.
Int Urol Nephrol ; 54(9): 2407-2420, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35211826

ABSTRACT

BACKGROUND: In end-stage renal disease, a high cardiovascular risk profile and endothelial damage prevails. The heparin-binding growth factor midkine stimulates neo-angiogenesis in ischemic diseases, coordinates neutrophil influx, and raises blood pressure through stimulated angiotensin synthesis. METHODS: We determined changes of midkine serum levels during hemodialysis sessions under the assumption that endothelial cell-derived midkine is released. Periprocedural differences (∆midkine) were calculated and correlated with cardiovacular biomarkers and fluid status (clinical assessment, V. cava collapse, comet tail phenomenon), cardiovascular morbidities, mortality rates. Blood was collected before and after dialysis from hemodialysis patients (n = 171; diabetes: n = 70; hypervolemia: n = 83; both: n = 32). RESULTS: Baseline midkine levels were ~ fourfold elevated compared to healthy controls (n = 100). Further, on average a tenfold rise was detected during dialysis, the extent of which was partially related to non-fractionated heparin application (r2 = 0.17). Inter-individual differences were highly reproducible. Hypervolemic patients responded with a less than average rise in midkine levels during dialysis (p < 0.02), this difference became more obvious with co-existing diabetes (p < 0.001 for long dialysis-free interval) and was confirmed in an independently enrolled dialysis cohort (n = 88). In Kaplan Meier survival curves, low delta midkine levels correlated with cardiovascular/overall mortality rates, similar to elevated uPAR levels, whereas other markers (NTproANP, galectin, tenascin-C) were less predictive. Following intervention with successful fluid removal in hypervolemic dialysis patients to optimize fluid homeostasis, midkine values increased (p < 0.002), which was not observed in patients that failed to decrease weight. CONCLUSION: Thus, for dialysis patients inadequate periprocedural midkine upregulation is linked with hypervolemia and associates with cardiovascular events.


Subject(s)
Heart Failure , Kidney Failure, Chronic , Water-Electrolyte Imbalance , Biomarkers , Heparin , Humans , Midkine , Prospective Studies , Renal Dialysis
15.
Magn Reson Med ; 87(5): 2099-2110, 2022 05.
Article in English | MEDLINE | ID: mdl-34866240

ABSTRACT

PURPOSE: Biologically interesting signals can exhibit fast transverse relaxation and frequency shifts compared to free water. For spectral assignment, a ultra-short echo time (UTE) imaging sequence was modified to provide pixel-wise free-induction decay (FID) acquisition. METHODS: The UTE-FID approach presented relies on a multi-echo 3D spiral UTE sequence with six echoes per radiofrequency (RF) excitation (TEmin 0.05 ms, echo spacing 3 ms). A complex pixel-wise raw data set for FID spectroscopy is obtained by several multi-echo UTE measurements with systematic shifting of the readout by 0.25 or 0.5 ms, until the time domain is filled for 18 or 45 ms. B0 drifts are compensated by mapping and according phase correction. Autoregressive extrapolation of the signal is performed before Gaussian filtering. This method was applied to a phantom containing collagen-water solutions of different concentrations. To calculate the collagen content, a 19-peak collagen model was extracted from a non-selective FID spectrum (50% collagen solution). Proton-density-collagen-fraction (PDCF) was calculated for 10 collagen solutions (2%-50%). Furthermore, an in vivo UTE-FID spectrum of adipose tissue was recorded. RESULTS: UTE-FID signal patterns agreed well with the non-spatially selective pulse-acquire FID spectrum from a sphere filled with 50% collagen. Differentiation of collagen solution from distilled water in the PDCF map was possible from 4% collagen concentration for a UTE-FID sequence with 128 × 128 × 64 matrix (voxel size 1 × 1 × 2.85 mm3 ). The mean values of the PDCF correlate linearly with collagen concentration. CONCLUSION: The presented UTE-FID approach allows pixel-wise raw data acquisition similar to non-spatially selective pulse-acquire spectroscopy. Spatially resolved applications for assessment of spectra of rapidly decaying signals seem feasible.


Subject(s)
Imaging, Three-Dimensional , Magnetic Resonance Imaging , Magnetic Resonance Imaging/methods , Phantoms, Imaging , Protons , Spectrum Analysis
16.
Z Med Phys ; 31(4): 394-402, 2021 Nov.
Article in English | MEDLINE | ID: mdl-33832846

ABSTRACT

Inflammation of adipose tissue, particularly visceral adipose tissue, is assumed to be a causal factor for the development of type 2 diabetes, non-alcoholic fatty liver disease, and cardiovascular diseases. Invasive biopsy is currently mandatory for assessment and grading of adipose tissue inflammation. Magnetic resonance detection of the increased water content of inflamed adipose tissue is considered to be a non-invasive alternative. Additional water is mainly originating from macrophages clustering in small regions between adipocytes. This article addresses the characteristics of water signals from areas between adipocytes in terms of line width, line shape, and relaxation properties. Since water and lipids inside adipose tissue have different magnetic susceptibilities, microscopic field inhomogeneities arise depending on the geometry and orientation of the water containing confinements. Relatively pronounced microscopic field inhomogeneities in the water compartments cause a broad spectral distribution of water signals. As a consequence the water signal of adipose tissue shows special characteristics different to common parenchyma tissues, in which cell content and intercellular space consist of water. The broad and non-Lorentzian field distribution of signals emanating from the water compartments in adipose tissue results in a fast non-exponential signal decay. Therefore, short echo times are recommended for sensitive gradient-echo based imaging. A non-exponential irregular signal decay potentially leads to problems in fat/water separation using Dixon techniques. Marked microscopic field inhomogeneities in combination with diffusion related displacement of water molecules cause irreversible dephasing and therefore accelerated signal decay even for spin-echo sequences. A volume localized spectrum of porcine fat recorded at 3T by a STEAM sequence with an echo time of 5.4ms shows a broad water signal with a line width of 70Hz±4Hz, in contrast to the CH2-peak of lipids in the same spectrum with a line width of only 14.7Hz±0.7Hz. This finding is qualitatively consistent with the results of finite element modelling of the magnetic field in geometric models and experiments in phantoms with oil-filled balloons surrounded by water.


Subject(s)
Diabetes Mellitus, Type 2 , Water , Adipose Tissue/diagnostic imaging , Animals , Inflammation/diagnostic imaging , Magnetic Resonance Imaging , Swine
17.
Foods ; 10(2)2021 Jan 26.
Article in English | MEDLINE | ID: mdl-33530339

ABSTRACT

Dextran hydrolysis by dextranases is applied in the sugar industry and the medical sector, but it also has a high potential for use in structural analysis of dextrans. However, dextranases are produced by several organisms and thus differ in their properties. The aim of this study was to comparatively investigate the product patterns obtained from the incubation of linear as well as O3- and O4-branched dextrans with different dextranases. For this purpose, genes encoding for dextranases from Bacteroides thetaiotaomicron and Streptococcus salivarius were cloned and heterologously expressed in Escherichia coli. The two recombinant enzymes as well as two commercial dextranases from Chaetomium sp. and Penicillium sp. were subsequently used to hydrolyze structurally different dextrans. The hydrolysis products were investigated in detail by HPAEC-PAD. For dextranases from Chaetomium sp., Penicillium sp., and Bacteroides thetaiotaomicron, isomaltose was the end product of the hydrolysis from linear dextrans, whereas Penicillium sp. dextranase led to isomaltose and isomaltotetraose. In addition, the latter enzyme also catalyzed a disproportionation reaction when incubated with isomaltotriose. For O3- and O4-branched dextrans, the fungal dextranases yielded significantly different oligosaccharide patterns than the bacterial enzymes. Overall, the product patterns can be adjusted by choosing the correct enzyme as well as a defined enzyme activity.

18.
BMC Musculoskelet Disord ; 22(1): 230, 2021 Feb 27.
Article in English | MEDLINE | ID: mdl-33639901

ABSTRACT

BACKGROUND: Total hip arthroplasty (THA) is an effective procedure for patients with end-stage hip osteoarthritis. However, whether or not pre-operatively existing functional deficits are persisting several years post-surgery in the affected limb has not been thoroughly researched. Therefore, the primary aim of this preliminary study was to include patients four to five years after undergoing THA and to investigate potential differences between the operated and non-operated leg in hip strength, range of motion (ROM), balance, and gait. The secondary aim was to compare these values from the operated leg of the patients to those of the legs of healthy subjects. METHODS: Sixteen patients (age: 65.20 ± 5.32 years) following unilateral THA (post-operation time: 4.7 ± 0.7 years) and ten, healthy, age-matched control subjects (age: 60.85 ± 7.57 years) were examined for maximum isometric hip muscle strength, active ROM of the hip joint, balance and gait on both limbs. Paired t-tests were used to assess the inter-limb differences in the THA group. Analyses of covariance (ANCOVA) were performed to compare groups, using age as a covariate. RESULTS: The analysis of inter-limb differences in patients following THA revealed significant deficits on the operated side for hip abduction strength (p = 0.02), for hip flexion ROM (p < 0.01) and for balance in terms of the length of center of pressure (COP) (p = 0.04). Compared to values of the control subjects, the patients demonstrated significantly reduced hip strength in flexion, extension and abduction (p < 0.05) on the operated leg as well as reduced ROM measures in hip flexion, extension and abduction (p < 0.05). CONCLUSIONS: The first results of this explorative study indicated that inter-limb differences as well as reduced hip strength and hip ROM compared with control subjects were still present four to five years after THA. These persisting asymmetries and deficits in patients following THA may be one explanation for the decrease in health-related quality of life (HRQoL) seen in patients over the years after surgery. Further studies are required to replicate these findings with a larger sample size. TRIAL REGISTRATION: DRKS, DRKS00016945. Registered 12 March 2019 - Retrospectively registered.


Subject(s)
Arthroplasty, Replacement, Hip , Osteoarthritis, Hip , Aged , Arthroplasty, Replacement, Hip/adverse effects , Cross-Sectional Studies , Hip Joint/surgery , Humans , Middle Aged , Osteoarthritis, Hip/surgery , Quality of Life , Range of Motion, Articular
19.
Carbohydr Polym ; 231: 115697, 2020 Mar 01.
Article in English | MEDLINE | ID: mdl-31888841

ABSTRACT

Dextrans and other bacterial α-glucans are versatile and structurally diverse polysaccharides which can be enzymatically synthesized by using glucansucrases. By substituting certain amino acids in the active site of these enzymes, the structure of the synthesized polysaccharides can be modified. In this study, such amino acid substitutions were applied (single and combined) to the dextransucrase from Lactobacillus reuteri TMW 1.106 and the structures of the synthesized polysaccharides were subsequently characterized in detail. Besides methylation analysis, α-glucans were hydrolyzed by several glycoside hydrolases and the liberated oligosaccharides were identified by comparison to standard compounds or by isolation and NMR spectroscopic characterization. Furthermore, two-dimensional NMR spectroscopy was used to analyze the untreated polysaccharides. The results demonstrated that structurally different α-glucans were formed, for example different highly O4-branched dextrans or several reuteran-like polymers with varying fine structures. Consequently, mutant Lactobacillus reuteri TMW 1.106 dextransucrases can be used to form structurally unique polysaccharides.


Subject(s)
Glucans/chemistry , Glucosyltransferases/chemistry , Limosilactobacillus reuteri/enzymology , Molecular Structure , Amino Acid Substitution/genetics , Dextrans/chemistry , Glucans/ultrastructure , Glucosyltransferases/genetics , Magnetic Resonance Spectroscopy , Methylation , Mutation/genetics , Protein Engineering
20.
J Agric Food Chem ; 67(47): 13108-13118, 2019 Nov 27.
Article in English | MEDLINE | ID: mdl-31738546

ABSTRACT

Glucansucrases can be used to glucosylate various plant-derived phenolic compounds by using sucrose as donor substrate. We applied Lactobacillus reuteri TMW 1.106 dextransucrase to glucosylate the acceptor substrates caffeic acid and gallic acid. Subsequently, monoglucosylated and in particular oligo- and polyglucosylated conjugates were characterized by using different chromatographic techniques and two-dimensional NMR spectroscopy. Both acceptors were substituted at positions O3 and O4. Under the conditions used, two monoglucosylated products were formed for caffeic acid, whereas only one O3-monosubstituted conjugate was detected for gallic acid. However, both acceptors resulted in O4-substituted oligo- and polyglucosylated conjugates, the amount of which was higher from gallic acid than from caffeic acid. Profile analysis tensiometry suggested that, in contrast to unmodified dextrans, oligo- and polymeric glucoconjugates of gallic acid are highly interfacially active. Overall, we provide the first detailed characterization of enzymatically conjugated oligo- and polymeric dextrans, which may have further potential as functional ingredients.


Subject(s)
Bacterial Proteins/chemistry , Caffeic Acids/chemistry , Gallic Acid/chemistry , Glucose/chemistry , Glucosyltransferases/chemistry , Limosilactobacillus reuteri/enzymology , Biocatalysis , Dextrans/chemistry , Glycosylation
SELECTION OF CITATIONS
SEARCH DETAIL
...