Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 81
Filter
1.
medRxiv ; 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-39006440

ABSTRACT

To address the growing epidemic of liver disease, particularly in pediatric populations, it is crucial to identify modifiable risk factors for the development and progression of metabolic dysfunction-associated steatotic liver disease (MASLD). Per- and polyfluoroalkyl substances (PFAS) are persistent ubiquitous chemicals and have emerged as potential risk factors for liver damage. However, their impact on the etiology and severity of MASLD remains largely unexplored in humans. This study aims to bridge the gap between human and in vitro studies to understand how exposure to perfluoroheptanoic acid (PFHpA), one of the emerging PFAS replacements which accumulates in high concentrations in the liver, contributes to MASLD risk and progression. First, we showed that PFHpA plasma concentrations were significantly associated with increased risk of MASLD in obese adolescents. Further, we examined the impact of PFHpA on hepatic metabolism using 3D human liver spheroids and single-cell transcriptomics to identify major hepatic pathways affected by PFHpA. Next, we integrated the in vivo and in vitro multi-omics datasets with a novel statistical approach which identified signatures of proteins and metabolites associated with MASLD development triggered by PFHpA exposure. In addition to characterizing the contribution of PFHpA to MASLD progression, our study provides a novel strategy to identify individuals at high risk of PFHpA-induced MASLD and develop early intervention strategies. Notably, our analysis revealed that the proteomic signature exhibited a stronger correlation between both PFHpA exposure and MASLD risk compared to the metabolomic signature. While establishing a clear connection between PFHpA exposure and MASLD progression in humans, our study delved into the molecular mechanisms through which PFHpA disrupts liver metabolism. Our in vitro findings revealed that PFHpA primarily impacts lipid metabolism, leading to a notable increase of lipid accumulation in human hepatocytes after PFHpA exposure. Among the pathways involved in lipid metabolism in hepatocytes, regulation of lipid metabolism by PPAR-a showed a remarkable activation. Moreover, the translational research framework we developed by integrating human and in vitro data provided us biomarkers to identify individuals at a high risk of MASLD due to PFHpA exposure. Our framework can inform policies on PFAS-induced liver disease and identify potential targets for prevention and treatment strategies.

2.
Polymers (Basel) ; 16(12)2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38932080

ABSTRACT

Car manufacturers are currently challenged with increasing the sustainability of their products and production to comply with sustainability requirements and legislation. One way to enhance product sustainability is by reducing the carbon footprint of fossil-based plastic parts. Particle foams are a promising solution to achieve the goal of using lightweight parts with minimal material input. Ongoing developments involve the use of expanded particle foam beads made from engineering plastics such as polyamide (EPA). To achieve this, a simulated life cycle was carried out on virgin EPA, including mechanical recycling. The virgin material was processed into specimens using a steam-free method. One series was artificially aged to replicate automotive life cycle stresses, while the other series was not. The mechanical recycling and re-foaming of the minipellets were then carried out, resulting in an EPA particle foam with 100% recycled content. Finally, the thermal and chemical material properties were comparatively analysed. The study shows that the recycled EPA beads underwent polymer degradation during the simulated life cycle, as evidenced by their material properties. For instance, the recycled beads showed a more heterogeneous molecular weight distribution (an increase in PDI from two to three), contained carbonyl groups, and exhibited an increase in the degree of crystallization from approximately 24% to 36%.

3.
Chemosphere ; 361: 142390, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38801906

ABSTRACT

Per- and polyfluoroalkyl substances (PFAS) encompass a diverse group of synthetic fluorinated chemicals known to elicit adverse health effects in animals and humans. However, only a few studies investigated the mechanisms underlying clearance of PFAS. Herein, the relevance of human renal transporters and permeability to clearance and bioaccumulation for 14 PFAS containing three to eleven perfluorinated carbon atoms (ηpfc = 3-11) and several functional head-groups was investigated. Apparent permeabilities and interactions with human transporters were measured using in vitro cell-based assays, including the MDCK-LE cell line, and HEK293 stable transfected cell lines expressing organic anion transporter (OAT) 1-4 and organic cation transporter (OCT) 2. The results generated align with the Extended Clearance Classification System (ECCS), affirming that permeability, molecular weight, and ionization serve as robust predictors of clearance and renal transporter engagement. Notably, PFAS with low permeability (ECCS 3A and 3B) exhibited substantial substrate activity for OAT1 and OAT3, indicative of active renal secretion. Furthermore, we highlight the potential contribution of OAT4-mediated reabsorption to the renal clearance of PFAS with short ηpfc, such as perfluorohexane sulfonate (PFHxS). Our data advance our mechanistic understanding of renal clearance of PFAS in humans, provide useful input parameters for toxicokinetic models, and have broad implications for toxicological evaluation and regulatory considerations.


Subject(s)
Fluorocarbons , Kidney , Organic Anion Transporters , Humans , Fluorocarbons/metabolism , HEK293 Cells , Kidney/metabolism , Animals , Organic Anion Transporters/metabolism , Madin Darby Canine Kidney Cells , Dogs , Permeability , Environmental Pollutants/metabolism , Biological Transport
4.
Sci Total Environ ; 930: 172840, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38685432

ABSTRACT

Exposure to per- and poly-fluoroalkyl substances (PFAS) is ubiquitous due to their persistence in the environment and in humans. Extreme weight loss has been shown to influence concentrations of circulating persistent organic pollutants (POPs). Using data from the multi-center perspective Teen-Longitudinal Assessment of Bariatric Surgery (Teen-LABS) cohort, we investigated changes in plasma-PFAS in adolescents after bariatric surgery. Adolescents (Mean age = 17.1 years, SD = 1.5 years) undergoing bariatric surgery were enrolled in the Teen-LABS study. Plasma-PFAS were measured at the time of surgery and then 6-, 12-, and 36 months post-surgery. Linear mixed effect models were used to evaluate longitudinal changes in plasma-PFAS after the time of bariatric surgery. This study included 214 adolescents with severe obesity who had available longitudinal measures of plasma-PFAS and underwent bariatric surgery between 2007 and 2012. Underlying effects related to undergoing bariatric surgery were found to be associated with an initial increase or plateau in concentrations of circulating PFAS up to 6 months after surgery followed by a persistent decline in concentrations of 36 months (p < 0.001 for all plasma-PFAS). Bariatric surgery in adolescents was associated with a decline in circulating PFAS concentrations. Initially following bariatric surgery (0-6 months) concentrations were static followed by decline from 6 to 36 months following surgery. This may have large public health implications as PFAS are known to be associated with numerous metabolic related diseases and the significant reduction in circulating PFAS in individuals who have undergone bariatric surgery may be related to the improvement of such metabolic related diseases following bariatric surgery.


Subject(s)
Bariatric Surgery , Environmental Pollutants , Humans , Adolescent , Male , Female , Longitudinal Studies , Environmental Pollutants/blood , Environmental Exposure/statistics & numerical data , Fluorocarbons/blood , Obesity, Morbid/surgery , Obesity, Morbid/blood
5.
Toxics ; 12(4)2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38668476

ABSTRACT

Per- and polyfluoroalkyl substances (PFAS) are a diverse group of fluorinated compounds which have yet to undergo comprehensive investigation regarding potential adverse health effects and bioaccumulative properties. With long half-lives and accumulative properties, PFAS have been linked to several toxic effects in both non-clinical species such as rat and mouse as well as human. Although biological impacts and specific protein binding of PFAS have been examined, there is no study focusing on the species-specific fraction unbound (fu) in plasma and related toxicokinetics. Herein, a presaturation equilibrium dialysis method was used to measure and validate the binding of 14 individual PFAS with carbon chains containing 4 to 12 perfluorinated carbon atoms and several functional head-groups to albumin and plasma of mouse (C57BL/6 and CD-1), rat, and human. Equivalence testing between each species-matrix combination showed positive correlation between rat and human when comparing fu in plasma and binding to albumin. Similar trends in binding were also observed for mouse plasma and albumin. Relatively high Spearman correlations for all combinations indicate high concordance of PFAS binding regardless of matrix. Physiochemical properties of PFAS such as molecular weight, chain length, and lipophilicity were found to have important roles in plasma protein binding of PFAS.

6.
Polymers (Basel) ; 16(3)2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38337290

ABSTRACT

Reducing the CO2 emissions of plastic parts is crucial in terms of sustainable product and process designs. Approaches include the use of recycled materials and reducing the energy demands of processes through more efficient technologies. In this context, this study shows the potential of the steam-free processing of particle foam beads into thin-walled moulded parts. Expanded polypropylene (EPP) particle foam beads have been processed in both a steam-free and steam-based process. For this purpose, specimens with different part densities and thicknesses were produced, the mechanical properties were investigated, and the surface quality was discussed. Specimens made of EPP with a part thickness of 5 to 20 mm and part densities of 60 to 185 g/L were produced steam-free. Lower part thicknesses and higher densities increase the mechanical properties. As the density increased, the homogeneity of the surfaces of the steam-free specimens also increased. In comparison, specimens with a thickness of 10 mm and part densities of 35 to 90 g/L were produced on a steam-based process. The results of the mechanical test were compared with those of the steam-free specimens. The steam-based specimens showed higher mechanical properties for the same density.

7.
Environ Sci Technol ; 58(2): 1055-1063, 2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38166384

ABSTRACT

Per- and polyfluoroalkyl substances (PFAS) are a diverse class of highly persistent anthropogenic chemicals that are detectable in the serum of most humans. PFAS exposure has been associated with many adverse effects on human health including immunotoxicity, increased risk of certain cancers, and metabolic disruption. PFAS binding to the most abundant blood serum proteins (human serum albumin [HSA] and globulins) is thought to affect transport to active sites, toxicity, and elimination half-lives. However, few studies have investigated the competitive binding of PFAS to these proteins in human serum. Here, we use C18 solid-phase microextraction fibers to measure HSA-water and globulin-water distribution coefficients (DHSA/w, Dglob/w) for PFAS with carbon chains containing 4 to 13 perfluorinated carbons (ηpfc = 4-13) and several functional head-groups. PFAS with ηpfc < 7 were highly bound to HSA relative to globulins, whereas PFAS with ηpfc ≥ 7 showed a greater propensity for binding to globulins. Experimentally measured DHSA/w and Dglob/w and concentrations of serum proteins successfully predicted the variability in PFAS binding in human serum. We estimated that the unbound fraction of serum PFAS varied by up to a factor of 2.5 among individuals participating in the 2017-2018 U.S. National Health and Nutrition Examination Survey. These results suggest that serum HSA and globulins are important covariates for epidemiological studies aimed at understanding the effects of PFAS exposure.


Subject(s)
Alkanesulfonic Acids , Drinking Water , Environmental Pollutants , Fluorocarbons , Globulins , Humans , Toxicokinetics , Nutrition Surveys , Fluorocarbons/toxicity , Fluorocarbons/analysis , Blood Proteins , Carbon , Alkanesulfonic Acids/analysis , Environmental Pollutants/analysis
8.
Environ Sci Technol ; 58(1): 143-149, 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38154793

ABSTRACT

Human exposure to perfluorinated alkylate substances (PFASs) is usually assessed from the concentrations in serum or plasma, assuming one-compartment toxicokinetics. To characterize body distributions of major PFASs, we obtained and extracted tissue samples from 19 forensic autopsies of healthy adult subjects who had died suddenly and were not known to have elevated levels of PFAS exposure. As target organs of toxicological importance, we selected the liver, kidneys, lungs, spleen, and brain, as well as whole blood. Samples weighing about 0.1 g were analyzed by liquid chromatography coupled to triple mass spectrometers. Minor variations in PFAS concentrations were found between the kidney cortex and medulla and between lung lobes. Organ concentrations of perfluorooctanoic sulfonate (PFOS) and perfluorononanoate (PFNA) correlated well with blood concentrations, while perfluorooctanoate (PFOA) and perfluorohexanoic sulfonate (PFHxS) showed more variable associations. Likewise, the liver concentrations correlated well with those of other organs. Calculations of relative distributions were carried out to assess the interdependence of organ retentions. Equilibrium model predictions largely explained the observed PFAS distributions, except for the brain. Although the samples were small and affected by a possible lack of homogeneity, these findings support the use of blood-PFAS concentrations as a measure of PFAS exposure, with the liver possibly acting as the main organ of retention.


Subject(s)
Alkanesulfonic Acids , Environmental Pollutants , Fluorocarbons , Adult , Humans , Alkanesulfonates , Plasma , Fluorocarbons/pharmacokinetics
9.
Nat Commun ; 14(1): 8142, 2023 Dec 08.
Article in English | MEDLINE | ID: mdl-38065964

ABSTRACT

To ameliorate or even prevent signatures of aging in ultimately humans, we here report the identification of a previously undescribed polyacetylene contained in the root of carrots (Daucus carota), hereafter named isofalcarintriol, which we reveal as potent promoter of longevity in the nematode C. elegans. We assign the absolute configuration of the compound as (3 S,8 R,9 R,E)-heptadeca-10-en-4,6-diyne-3,8,9-triol, and develop a modular asymmetric synthesis route for all E-isofalcarintriol stereoisomers. At the molecular level, isofalcarintriol affects cellular respiration in mammalian cells, C. elegans, and mice, and interacts with the α-subunit of the mitochondrial ATP synthase to promote mitochondrial biogenesis. Phenotypically, this also results in decreased mammalian cancer cell growth, as well as improved motility and stress resistance in C. elegans, paralleled by reduced protein accumulation in nematodal models of neurodegeneration. In addition, isofalcarintriol supplementation to both wild-type C57BL/6NRj mice on high-fat diet, and aged mice on chow diet results in improved glucose metabolism, increased exercise endurance, and attenuated parameters of frailty at an advanced age. Given these diverse effects on health parameters in both nematodes and mice, isofalcarintriol might become a promising mitohormesis-inducing compound to delay, ameliorate, or prevent aging-associated diseases in humans.


Subject(s)
Caenorhabditis elegans , Daucus carota , Humans , Animals , Mice , Caenorhabditis elegans/metabolism , Mitochondria/metabolism , Mice, Inbred C57BL , Aging , Longevity , Polyynes/metabolism , Mammals
10.
Environ Sci Technol ; 57(40): 14817-14826, 2023 10 10.
Article in English | MEDLINE | ID: mdl-37756184

ABSTRACT

Animal studies have pointed at the liver as a hotspot for per- and polyfluoroalkyl substances (PFAS) accumulation and toxicity; however, these findings have not been replicated in human populations. We measured concentrations of seven PFAS in matched liver and plasma samples collected at the time of bariatric surgery from 64 adolescents in the Teen-Longitudinal Assessment of Bariatric Surgery (Teen-LABS) study. Liver:plasma concentration ratios were perfectly explained (r2 > 0.99) in a multilinear regression (MLR) model based on toxicokinetic (TK) descriptors consisting of binding to tissue constituents and membrane permeabilities. Of the seven matched plasma and liver PFAS concentrations compared in this study, the liver:plasma concentration ratio of perfluoroheptanoic acid (PFHpA) was considerably higher than the liver:plasma concentration ratio of other PFAS congeners. Comparing the MLR model with an equilibrium mass balance model (MBM) suggested that complex kinetic transport processes are driving the unexpectedly high liver:plasma concentration ratio of PFHpA. Intratissue MBM modeling pointed to membrane lipids as the tissue constituents that drive the liver accumulation of long-chain, hydrophobic PFAS, whereas albumin binding of hydrophobic PFAS dominated PFAS distribution in plasma. The liver:plasma concentration data set, empirical MLR model, and mechanistic MBM modeling allow the prediction of liver from plasma concentrations measured in human cohort studies. Our study demonstrates that combining biomonitoring data with mechanistic modeling can identify underlying mechanisms of internal distribution and specific target organ toxicity of PFAS in humans.


Subject(s)
Alkanesulfonic Acids , Bariatric Surgery , Environmental Pollutants , Fluorocarbons , Animals , Humans , Adolescent , Cohort Studies , Liver , Fluorocarbons/analysis
11.
EMBO J ; 42(7): e111450, 2023 04 03.
Article in English | MEDLINE | ID: mdl-36861806

ABSTRACT

Membrane ion channels of the calcium homeostasis modulator (CALHM) family promote cell-cell crosstalk at neuronal synapses via ATP release, where ATP acts as a neurotransmitter. CALHM6, the only CALHM highly expressed in immune cells, has been linked to the induction of natural killer (NK) cell anti-tumour activity. However, its mechanism of action and broader functions in the immune system remain unclear. Here, we generated Calhm6-/- mice and report that CALHM6 is important for the regulation of the early innate control of Listeria monocytogenes infection in vivo. We find that CALHM6 is upregulated in macrophages by pathogen-derived signals and that it relocates from the intracellular compartment to the macrophage-NK cell synapse, facilitating ATP release and controlling the kinetics of NK cell activation. Anti-inflammatory cytokines terminate CALHM6 expression. CALHM6 forms an ion channel when expressed in the plasma membrane of Xenopus oocytes, where channel opening is controlled by a conserved acidic residue, E119. In mammalian cells, CALHM6 is localised to intracellular compartments. Our results contribute to the understanding of neurotransmitter-like signal exchange between immune cells that fine-tunes the timing of innate immune responses.


Subject(s)
Bacterial Infections , Immunological Synapses , Mice , Animals , Ion Channels/metabolism , Killer Cells, Natural , Bacterial Infections/metabolism , Adenosine Triphosphate/metabolism , Mammals
12.
Environ Sci Process Impacts ; 25(3): 609-620, 2023 Mar 22.
Article in English | MEDLINE | ID: mdl-36779546

ABSTRACT

In standardized sediment toxicity tests, the applied water exchange methods range from static to flow-through conditions and vary between protocols and laboratories even for the same test species. This variation potentially results in variable chemical exposure, hampering the interpretation of toxicity and bioaccumulation. To address these issues, we performed sediment toxicity tests with a mixture of three polycyclic aromatic hydrocarbons (PAHs) and the freshwater epibenthic amphipod Hyalella azteca as model chemicals and organism, respectively. Five standardized water exchange methods were applied: static, semi-static, or flow-through conditions. By measuring total (Cdiss) and freely dissolved concentrations (Cfree) of PAHs with water sampling and direct immersion solid-phase microextraction methods, respectively, we found that Cdiss in overlying water differed by a factor of up to 107 among water exchange conditions, whereas both Cdiss and Cfree in pore water did not differ by more than a factor of 2.6. Similar survival rates, growth rates, and bioaccumulation of PAHs between water exchange methods suggest that H. azteca was predominantly exposed to pore water rather than overlying water. By applying mechanistic kinetic modeling to simulate spatiotemporal concentration profiles in sediment toxicity tests, we discuss the importance of the water exchange rates and resulting temporal and spatial exposure variability for the extrapolation of laboratory sediment toxicity to field conditions, particularly for chemicals with relatively low hydrophobicity and sediments with low organic carbon content.


Subject(s)
Amphipoda , Polycyclic Aromatic Hydrocarbons , Water Pollutants, Chemical , Animals , Water , Bioaccumulation , Toxicity Tests , Polycyclic Aromatic Hydrocarbons/toxicity , Polycyclic Aromatic Hydrocarbons/analysis , Organic Chemicals/toxicity , Hydrophobic and Hydrophilic Interactions , Geologic Sediments/chemistry , Water Pollutants, Chemical/analysis
13.
Medicina (Kaunas) ; 58(10)2022 Oct 07.
Article in English | MEDLINE | ID: mdl-36295570

ABSTRACT

Background and Objectives: With more and more cases emerging outside central and west African countries, where the disease is endemic, the World Health Organization (WHO) has recently declared human monkeypox a Public Health Emergency of International Concern. Typical symptoms of the disease include fever, myalgia, and lymphadenopathy followed by a rash, but other symptoms may occur. Immunocompromised patients, including patients with uncontrolled Human Immunodeficiency Virus (HIV) infection, may be at risk for more severe courses. Case presentation: We present the case of a 30-year-old male patient of Brazilian descent with monkeypox. Initial symptoms were fever and general discomfort, with painful pharyngitis and tonsillitis and finally a papular rash of the anogenital area as the disease progressed. The presumed date of infection was a sexual contact with an unknown male eight days before the first symptoms occurred. The patient had a known and controlled HIV infection. The main reason for the initial presentation at the hospital was painful pharyngitis and tonsillitis, limiting food intake. Monkeypox infection was confirmed via PCR testing from a swab sample of cutaneous lesions. Adequate systemic and local analgesia enabled oral food uptake again. Antiviral therapy with Tecovirimat was not administered due to the stable immune status of the patient and the mild clinical symptoms. To cover a possible bacterial superinfection or Syphilis infection of the tonsil, antibiotic therapy with Ceftriaxone was added. Several days after presentation, the inflammation of the pharynx resolved and was followed by non-painful mucosal peeling. The patient was followed up with telephone calls and reported a complete recovery. The skin lesions were completely dried out 18 days after the first symptoms. Conclusions: Painful pharyngitis and tonsillitis can be rare early symptoms of monkeypox, which is highly relevant in everyday clinical practice. Particularly in patients with risk factors for monkeypox infection, further clinical and microbiologic testing for monkeypox should be performed if there is a clinical presentation with pharyngitis and tonsillitis.


Subject(s)
Exanthema , HIV Infections , Mpox (monkeypox) , Pharyngitis , Tonsillitis , Humans , Male , Adult , HIV Infections/complications , HIV Infections/diagnosis , Mpox (monkeypox)/complications , Ceftriaxone , Tonsillitis/complications , Tonsillitis/drug therapy , Tonsillitis/diagnosis , Pharyngitis/complications , Pharyngitis/drug therapy , Fever/complications , Antiviral Agents , Anti-Bacterial Agents , Exanthema/complications
14.
Environ Toxicol Chem ; 41(11): 2679-2687, 2022 11.
Article in English | MEDLINE | ID: mdl-35959891

ABSTRACT

Understanding the changes in the temporal and spatial concentrations of chemical substances in sediment toxicity tests facilitates interpretation of their toxicity and accumulation in benthic organisms because benthic organisms are affected by chemicals via multiple exposure pathways. However, such investigations using chronic sediment toxicity tests have rarely been performed. To examine the concentration profiles of a hydrophobic organic chemical using chronic spiked-sediment toxicity tests, we performed 28-day sediment toxicity tests of fluoranthene with a freshwater amphipod, Hyalella azteca, using a semi-flow-through system and compared the results with those of 10-day tests. In these experiments, we measured various types of fluoranthene concentrations over the test periods: total dissolved (Cdiss ) and freely dissolved (Cfree ) concentrations in overlying water and porewater as well as sediment concentrations. We also examined which concentration correlated with the amphipod bioconcentration factor (BCF). We found that both overlying water and porewater Cfree did not differ significantly on days 10 and 28. Sediment concentrations remained almost stable for 28 days, whereas Cdiss in overlying water varied temporally. These results suggest that the 28-day test provides almost constant concentrations of fluoranthene, particularly in porewater, even in a semi-flow-through system. In addition, the comparison of BCF of fluoranthene on day 10 in the present study with that obtained from water-only tests reported in the literature suggested that Cfree in pore water was the most representative indicator of bioaccumulation in H. azteca. Our findings support the possible use of a water-exchange system in chronic spiked-sediment toxicity tests of hydrophobic organic chemicals. However, further studies using sediments and chemicals with different properties are warranted to generalize the findings of the present study. Environ Toxicol Chem 2022;41:2679-2687. © 2022 SETAC.


Subject(s)
Amphipoda , Water Pollutants, Chemical , Animals , Amphipoda/metabolism , Bioaccumulation , Geologic Sediments/chemistry , Water Pollutants, Chemical/analysis , Organic Chemicals/metabolism , Water/metabolism
15.
Environ Toxicol Chem ; 2022 Aug 30.
Article in English | MEDLINE | ID: mdl-36039972

ABSTRACT

Aquatic toxicity tests with benthic organisms are used to predict the toxicity of hydrophobic organic chemicals (HOCs) in sediments, assuming that the freely dissolved concentration (Cfree ) is a good surrogate of bioavailability in the exposure system. However, Cfree of HOCs is difficult to control in water-only setups. Moreover, the role of dissolved organic carbon (DOC) in the occurrence of toxicity needs clarification because DOC concentrations in sediment porewater can be substantially higher than in typical test water. We introduced biocompatible polyethylene meshes with high sorptive capacities and fast release kinetics as a novel passive dosing phase, which maintained Cfree and Cwater (i.e., free + DOC-bound) in Hyalella azteca water-only tests. Adding the supernatant fraction of peat to test water as a DOC source increased Cwater to an extent comparable to sediment porewater and significantly increased and decreased the observed toxicity of permethrin and benzo[a]pyrene, respectively, to H. azteca. This result indicates that DOC can both benefit and harm test species likely due to the increased health after ingestion of DOC and to the uptake of DOC-bound HOCs, respectively. Passive dosing in combination with the addition of sediment DOC surrogates may better reflect exposure and habitat conditions in sediment porewater than conventional aquatic tests. Environ Toxicol Chem 2022;00:1-10. © 2022 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.

16.
Mol Cancer Ther ; 21(11): 1674-1688, 2022 11 03.
Article in English | MEDLINE | ID: mdl-35999659

ABSTRACT

Urological malignancies represent major challenges for clinicians, with annually rising incidences. In addition, cisplatin treatment induced long-term toxicities and the development of therapy resistance emphasize the need for novel therapeutics. In this study, we analyzed the effects of novel histone deacetylase (HDAC) and bromodomain and extraterminal domain-containing (BET) inhibitors to combine them into a potent HDAC-BET-fusion molecule and to understand their molecular mode-of-action. Treatment of (cisplatin-resistant) germ cell tumors (GCT), urothelial, renal, and prostate carcinoma cells with the HDAC, BET, and dual inhibitors decreased cell viability, induced apoptosis, and affected the cell cycle. Furthermore, a dual inhibitor considerably decreased tumor burden in GCT xenograft models. On a molecular level, correlating RNA- to ATAC-sequencing data indicated a considerable induction of gene expression, accompanied by site-specific changes of chromatin accessibility after HDAC inhibitor application. Upregulated genes could be linked to intra- and extra-cellular trafficking, cellular organization, and neuronal processes, including neuroendocrine differentiation. Regarding chromatin accessibility on a global level, an equal distribution of active or repressed DNA accessibility has been detected after HDAC inhibitor treatment, questioning the current understanding of HDAC inhibitor function. In summary, our HDAC, BET, and dual inhibitors represent a new treatment alternative for urological malignancies. Furthermore, we shed light on new molecular and epigenetic mechanisms of the tested epi-drugs, allowing for a better understanding of the underlying modes-of-action and risk assessment for the patient.


Subject(s)
Neoplasms, Germ Cell and Embryonal , Urologic Neoplasms , Humans , Cell Line, Tumor , Cell Proliferation , Chromatin , Cisplatin/pharmacology , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylases/metabolism , Neoplasms, Germ Cell and Embryonal/drug therapy , Urologic Neoplasms/drug therapy , Urologic Neoplasms/genetics , Animals
17.
Glob Chang Biol ; 28(17): 5254-5268, 2022 09.
Article in English | MEDLINE | ID: mdl-35703577

ABSTRACT

Data capturing multiple axes of tree size and shape, such as a tree's stem diameter, height and crown size, underpin a wide range of ecological research-from developing and testing theory on forest structure and dynamics, to estimating forest carbon stocks and their uncertainties, and integrating remote sensing imagery into forest monitoring programmes. However, these data can be surprisingly hard to come by, particularly for certain regions of the world and for specific taxonomic groups, posing a real barrier to progress in these fields. To overcome this challenge, we developed the Tallo database, a collection of 498,838 georeferenced and taxonomically standardized records of individual trees for which stem diameter, height and/or crown radius have been measured. These data were collected at 61,856 globally distributed sites, spanning all major forested and non-forested biomes. The majority of trees in the database are identified to species (88%), and collectively Tallo includes data for 5163 species distributed across 1453 genera and 187 plant families. The database is publicly archived under a CC-BY 4.0 licence and can be access from: https://doi.org/10.5281/zenodo.6637599. To demonstrate its value, here we present three case studies that highlight how the Tallo database can be used to address a range of theoretical and applied questions in ecology-from testing the predictions of metabolic scaling theory, to exploring the limits of tree allometric plasticity along environmental gradients and modelling global variation in maximum attainable tree height. In doing so, we provide a key resource for field ecologists, remote sensing researchers and the modelling community working together to better understand the role that trees play in regulating the terrestrial carbon cycle.


Subject(s)
Forests , Trees , Biomass , Carbon/metabolism , Carbon Cycle , Ecosystem , Trees/physiology
18.
J Biol Chem ; 298(7): 102085, 2022 07.
Article in English | MEDLINE | ID: mdl-35636511

ABSTRACT

Inhibition of gene expression in Caenorhabditis elegans, a versatile model organism for studying the genetics of development and aging, is achievable by feeding nematodes with bacteria expressing specific dsRNAs. Overexpression of hypoxia-inducible factor 1 (hif-1) or heat-shock factor 1 (hsf-1) by conventional transgenesis has previously been shown to promote nematodal longevity. However, it is unclear whether other methods of gene overexpression are feasible, particularly with the advent of CRISPR-based techniques. Here, we show that feeding C. elegans engineered to stably express a Cas9-derived synthetic transcription factor with bacteria expressing promoter-specific single guide RNAs (sgRNAs) also allows activation of gene expression. We demonstrate that CRISPR activation via ingested sgRNAs specific for the respective promoter regions of hif-1 or hsf-1 increases gene expression and extends lifespan of C. elegans. Furthermore, and as an in silico resource for future studies aiming to use CRISPR activation in C. elegans, we provide predicted promoter-specific sgRNA target sequences for >13,000 C. elegans genes with experimentally defined transcription start sites. We anticipate that the approach and components described herein will help to facilitate genome-wide gene overexpression studies, for example, to identify modulators of aging or other phenotypes of interest, by enabling induction of transcription by feeding of sgRNA-expressing bacteria to nematodes.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Animals , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/metabolism , Clustered Regularly Interspaced Short Palindromic Repeats , Eating , Longevity/genetics , RNA, Small Untranslated , CRISPR-Cas Systems
19.
Cells ; 11(8)2022 04 12.
Article in English | MEDLINE | ID: mdl-35455985

ABSTRACT

About thirty years ago, a new form of pro-inflammatory lytic cell death was observed and termed pyroptosis. Only in 2015, gasdermins were defined as molecules that create pores at the plasma membrane and drive pyroptosis. Today, we know that gasdermin-mediated death is an important antimicrobial defence mechanism in bacteria, yeast and mammals as it destroys the intracellular niche for pathogen replication. However, excessive and uncontrolled cell death also contributes to immunopathology in several chronic inflammatory diseases, including arthritis. In this review, we discuss recent findings where pyroptosis contributes to tissue damage and inflammation with a main focus on injury-induced and autoimmune arthritis. We also review novel functions and regulatory mechanisms of the pyroptotic executors gasdermins. Finally, we discuss possible models of how pyroptosis may contribute to the cross-talk between fibroblast and macrophages, and also how this cross-talk may regulate inflammation by modulating inflammasome activation and pyroptosis induction.


Subject(s)
Arthritis, Rheumatoid , Pyroptosis , Animals , Fibroblasts/metabolism , Inflammation , Intracellular Signaling Peptides and Proteins/metabolism , Macrophages/metabolism , Mammals/metabolism , Phosphate-Binding Proteins/metabolism , Pyroptosis/physiology
20.
Physiol Rev ; 102(3): 1449-1494, 2022 07 01.
Article in English | MEDLINE | ID: mdl-35343830

ABSTRACT

Aging is the single largest risk factor for many debilitating conditions, including heart diseases, stroke, cancer, diabetes, and neurodegenerative disorders. Although far from understood in its full complexity, it is scientifically well established that aging is influenced by genetic and environmental factors and can be modulated by various interventions. One of aging's early hallmarks is aberrations in transcriptional networks, controlling for example metabolic homeostasis or the response to stress. Evidence in different model organisms abounds that a number of evolutionarily conserved transcription factors, which control such networks, can affect life span and health span across species. These transcription factors thus potentially represent conserved regulators of longevity and are emerging as important targets in the challenging quest to develop treatments to mitigate age-related diseases, and possibly even to slow aging itself. This review provides an overview of evolutionarily conserved transcription factors that impact longevity or age-related diseases in at least one multicellular model organism (nematodes, flies, or mice) and/or are tentatively linked to human aging. Discussed is the general evidence for transcriptional regulation of aging and disease, followed by a more detailed look at selected transcription factor families, the common metabolic pathways involved, and the targeting of transcription factors as a strategy for geroprotective interventions.


Subject(s)
Longevity , Neurodegenerative Diseases , Aging/genetics , Animals , Gene Expression Regulation , Humans , Mice , Transcription Factors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL