Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
Biochimie ; 203: 93-105, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36184002

ABSTRACT

The objective of the present review is to provide an insight into modifications of microbial cell walls and membrane constituents by using the aminoacyl-tRNA as amino acid donor. In bacteria, phospholipids are modified by Multiple peptide resistance Factor enzymes and peptidoglycan precursors by so called fem ligases. Although these modifications were thought to be restricted to procaryotes, we discovered enzymes that modify ergosterol (the main component of fungal membrane) with glycine and aspartate. The focus of this review is to present the molecular mechanisms underlying all these processes together with the structure of the enzymes and their substrates. This article also reviews how substrates are recognized and modified and how the products are subsequently exported in various organisms. Finally, the physiological outcome and the discoveries of each family of enzymes is also discussed.


Subject(s)
Amino Acids , Amino Acyl-tRNA Synthetases , Amino Acids/metabolism , RNA, Transfer/metabolism , Cell Wall/metabolism , RNA, Transfer, Amino Acyl/metabolism , Peptidoglycan/metabolism , Amino Acyl-tRNA Synthetases/chemistry
2.
Metallomics ; 14(9)2022 09 12.
Article in English | MEDLINE | ID: mdl-36002005

ABSTRACT

Acquisition and homeostasis of essential metals during host colonization by bacterial pathogens rely on metal uptake, trafficking, and storage proteins. How these factors have evolved within bacterial pathogens is poorly defined. Urease, a nickel enzyme, is essential for Helicobacter pylori to colonize the acidic stomach. Our previous data suggest that acquisition of nickel transporters and a histidine-rich protein (HRP) involved in nickel storage in H. pylori and gastric Helicobacter spp. have been essential evolutionary events for gastric colonization. Using bioinformatics, proteomics, and phylogenetics, we extended this analysis to determine how evolution has framed the repertoire of HRPs among 39 Epsilonproteobacteria; 18 gastric and 11 non-gastric enterohepatic (EH) Helicobacter spp., as well as 10 other Epsilonproteobacteria. We identified a total of 213 HRPs distributed in 22 protein families named orthologous groups (OGs) with His-rich domains, including 15 newly described OGs. Gastric Helicobacter spp. are enriched in HRPs (7.7 ± 1.9 HRPs/strain) as compared to EH Helicobacter spp. (1.9 ± 1.0 HRPs/strain) with a particular prevalence of HRPs with C-terminal histidine-rich domains in gastric species. The expression and nickel-binding capacity of several HRPs was validated in five gastric Helicobacter spp. We established the evolutionary history of new HRP families, such as the periplasmic HP0721-like proteins and the HugZ-type heme oxygenases. The expansion of histidine-rich extensions in gastric Helicobacter spp. proteins is intriguing but can tentatively be associated with the presence of the urease nickel enzyme. We conclude that this HRP expansion is associated with unique properties of organisms that rely on large intracellular nickel amounts for their survival.


Subject(s)
Helicobacter pylori , Helicobacter , Bacterial Proteins/metabolism , Helicobacter/metabolism , Helicobacter pylori/metabolism , Histidine/metabolism , Nickel/metabolism , Proteins , Stomach , Urease/metabolism
3.
J Biol Chem ; 298(3): 101657, 2022 03.
Article in English | MEDLINE | ID: mdl-35131263

ABSTRACT

A wide range of bacteria possess virulence factors such as aminoacyl-tRNA transferases (ATTs) that are capable of rerouting aminoacyl-transfer RNAs away from protein synthesis to conjugate amino acids onto glycerolipids. We recently showed that, although these pathways were thought to be restricted to bacteria, higher fungi also possess ergosteryl-3ß-O-L-aspartate synthases (ErdSs), which transfer the L-Asp moiety of aspartyl-tRNAAsp onto the 3ß-OH group of ergosterol (Erg), yielding ergosteryl-3ß-O-L-aspartate (Erg-Asp). Here, we report the discovery, in fungi, of a second type of fungal sterol-specific ATTs, namely, ergosteryl-3ß-O-glycine (Erg-Gly) synthase (ErgS). ErgS consists of a freestanding DUF2156 domain encoded by a gene distinct from and paralogous to that of ErdS. We show that the enzyme only uses Gly-tRNAGly produced by an independent glycyl-tRNA synthetase (GlyRS) to transfer glycine onto the 3ß-OH of Erg, producing Erg-Gly. Phylogenomics analysis also show that the Erg-Gly synthesis pathway exists only in Ascomycota, including species of biotechnological interest, and more importantly, in human pathogens, such as Aspergillus fumigatus. The discovery of a second type of Erg-aa not only expands the repertoire of this particular class of fungal lipids but suggests that Erg-aa synthases might constitute a genuine subfamily of lipid-modifying ATTs.


Subject(s)
Ascomycota , Ergosterol , Glycine , Amino Acids , Ascomycota/genetics , Ascomycota/metabolism , Aspartic Acid , Glycine/biosynthesis , Glycine/genetics , Glycine/metabolism , Humans , RNA, Fungal/genetics , RNA, Fungal/metabolism , RNA, Transfer, Amino Acyl/genetics , RNA, Transfer, Amino Acyl/metabolism
4.
Steroids ; 169: 108823, 2021 05.
Article in English | MEDLINE | ID: mdl-33713678

ABSTRACT

Aminoacylated ergosterol such as 1-ergosteryl aspartate (Erg-Asp) is a new lipid component recently discovered in fungi. In order to study physiological functions of this novel sterol derivative and to develop potential antifungal agents, we established the method to synthesize aminoacylated ergosterol derivatives. Herein, we report the synthesis of Erg-Asp as well as some other aminoacylated ergosterols (Erg-Gly, Erg-Ala, Erg-Leu, Erg-Ile, and Erg-Val) using Boc protected amino acids.


Subject(s)
Ergosterol , Antifungal Agents , Peptide Fragments
5.
PLoS Pathog ; 17(1): e1009193, 2021 01.
Article in English | MEDLINE | ID: mdl-33444370

ABSTRACT

Cellular metal homeostasis is a critical process for all organisms, requiring tight regulation. In the major pathogen Helicobacter pylori, the acquisition of nickel is an essential virulence determinant as this metal is a cofactor for the acid-resistance enzyme, urease. Nickel uptake relies on the NixA permease and the NiuBDE ABC transporter. Till now, bacterial metal transporters were reported to be controlled at their transcriptional level. Here we uncovered post-translational regulation of the essential Niu transporter in H. pylori. Indeed, we demonstrate that SlyD, a protein combining peptidyl-prolyl isomerase (PPIase), chaperone, and metal-binding properties, is required for the activity of the Niu transporter. Using two-hybrid assays, we found that SlyD directly interacts with the NiuD permease subunit and identified a motif critical for this contact. Mutants of the different SlyD functional domains were constructed and used to perform in vitro PPIase activity assays and four different in vivo tests measuring nickel intracellular accumulation or transport in H. pylori. In vitro, SlyD PPIase activity is down-regulated by nickel, independently of its C-terminal region reported to bind metals. In vivo, a role of SlyD PPIase function was only revealed upon exposure to high nickel concentrations. Most importantly, the IF chaperone domain of SlyD was shown to be mandatory for Niu activation under all in vivo conditions. These data suggest that SlyD is required for the active functional conformation of the Niu permease and regulates its activity through a novel mechanism implying direct protein interaction, thereby acting as a gatekeeper of nickel uptake. Finally, in agreement with a central role of SlyD, this protein is essential for the colonization of the mouse model by H. pylori.


Subject(s)
Bacterial Proteins/metabolism , Helicobacter Infections/metabolism , Helicobacter pylori/metabolism , Metallochaperones/metabolism , Nickel/metabolism , Peptidylprolyl Isomerase/metabolism , Animals , Helicobacter Infections/microbiology , Mice , Urease/metabolism
6.
Proc Natl Acad Sci U S A ; 117(26): 14948-14957, 2020 06 30.
Article in English | MEDLINE | ID: mdl-32541034

ABSTRACT

Diverting aminoacyl-transfer RNAs (tRNAs) from protein synthesis is a well-known process used by a wide range of bacteria to aminoacylate membrane constituents. By tRNA-dependently adding amino acids to glycerolipids, bacteria change their cell surface properties, which intensifies antimicrobial drug resistance, pathogenicity, and virulence. No equivalent aminoacylated lipids have been uncovered in any eukaryotic species thus far, suggesting that tRNA-dependent lipid remodeling is a process restricted to prokaryotes. We report here the discovery of ergosteryl-3ß-O-l-aspartate (Erg-Asp), a conjugated sterol that is produced by the tRNA-dependent addition of aspartate to the 3ß-OH group of ergosterol, the major sterol found in fungal membranes. In fact, Erg-Asp exists in the majority of "higher" fungi, including species of biotechnological interest, and, more importantly, in human pathogens like Aspergillus fumigatus We show that a bifunctional enzyme, ergosteryl-3ß-O-l-aspartate synthase (ErdS), is responsible for Erg-Asp synthesis. ErdS corresponds to a unique fusion of an aspartyl-tRNA synthetase-that produces aspartyl-tRNAAsp (Asp-tRNAAsp)-and of a Domain of Unknown Function 2156, which actually transfers aspartate from Asp-tRNAAsp onto ergosterol. We also uncovered that removal of the Asp modifier from Erg-Asp is catalyzed by a second enzyme, ErdH, that is a genuine Erg-Asp hydrolase participating in the turnover of the conjugated sterol in vivo. Phylogenomics highlights that the entire Erg-Asp synthesis/degradation pathway is conserved across "higher" fungi. Given the central roles of sterols and conjugated sterols in fungi, we propose that this tRNA-dependent ergosterol modification and homeostasis system might have broader implications in membrane remodeling, trafficking, antimicrobial resistance, or pathogenicity.


Subject(s)
Aspartic Acid/metabolism , Aspergillus fumigatus/metabolism , RNA, Fungal/metabolism , RNA, Transfer, Amino Acyl/metabolism , Sterols/metabolism , Aminoacylation , Aspartic Acid/chemistry , Aspergillus fumigatus/chemistry , Aspergillus fumigatus/genetics , RNA, Fungal/chemistry , RNA, Fungal/genetics , RNA, Transfer, Amino Acyl/chemistry , RNA, Transfer, Amino Acyl/genetics , Sterols/chemistry
7.
Enzymes ; 48: 117-147, 2020.
Article in English | MEDLINE | ID: mdl-33837702

ABSTRACT

The aminoacylation reaction is one of most extensively studied cellular processes. The so-called "canonical" reaction is carried out by direct charging of an amino acid (aa) onto its corresponding transfer RNA (tRNA) by the cognate aminoacyl-tRNA synthetase (aaRS), and the canonical usage of the aminoacylated tRNA (aa-tRNA) is to translate a messenger RNA codon in a translating ribosome. However, four out of the 22 genetically-encoded aa are made "noncanonically" through a two-step or indirect route that usually compensate for a missing aaRS. Additionally, from the 22 proteinogenic aa, 13 are noncanonically used, by serving as substrates for the tRNA- or aa-tRNA-dependent synthesis of other cellular components. These nontranslational processes range from lipid aminoacylation, and heme, aa, antibiotic and peptidoglycan synthesis to protein degradation. This chapter focuses on these noncanonical usages of aa-tRNAs and the ways of generating them, and also highlights the strategies that cells have evolved to balance the use of aa-tRNAs between protein synthesis and synthesis of other cellular components.


Subject(s)
Amino Acyl-tRNA Synthetases , Transfer RNA Aminoacylation , Amino Acids , Amino Acyl-tRNA Synthetases/genetics , Amino Acyl-tRNA Synthetases/metabolism , Aminoacylation , RNA, Transfer/genetics , RNA, Transfer/metabolism
8.
Hum Mutat ; 40(10): 1826-1840, 2019 10.
Article in English | MEDLINE | ID: mdl-31116475

ABSTRACT

Mutations in genes encoding aminoacyl-tRNA synthetases have been reported in several neurological disorders. KARS is a dual localized lysyl-tRNA synthetase and its cytosolic isoform belongs to the multiple aminoacyl-tRNA synthetase complex (MSC). Biallelic mutations in the KARS gene were described in a wide phenotypic spectrum ranging from nonsyndromic deafness to complex impairments. Here, we report on a patient with severe neurological and neurosensory disease investigated by whole-exome sequencing and found to carry biallelic mutations c.683C>T (p.Pro228Leu) and c.871T>G (p.Phe291Val), the second one being novel, in the KARS gene. The patient presented with an atypical clinical presentation with an optic neuropathy not previously reported. At the cellular level, we show that cytoplasmic KARS was expressed at a lower level in patient cells and displayed decreased interaction with MSC. In vitro, these two KARS variants have a decreased aminoacylation activity compared with wild-type KARS, the p.Pro228Leu being the most affected. Our data suggest that dysfunction of cytoplasmic KARS resulted in a decreased level of translation of the nuclear-encoded lysine-rich proteins belonging to the respiratory chain complex, thus impairing mitochondria functions.


Subject(s)
Amino Acyl-tRNA Synthetases/genetics , Lysine-tRNA Ligase/genetics , Mutation , Nervous System Diseases/complications , Nervous System Diseases/genetics , Optic Nerve Diseases/complications , Sensation Disorders/complications , Sensation Disorders/genetics , Alleles , Amino Acid Sequence , Amino Acyl-tRNA Synthetases/chemistry , Amino Acyl-tRNA Synthetases/metabolism , Electron Transport Complex I/genetics , Electron Transport Complex I/metabolism , Electron Transport Complex IV/metabolism , Fibroblasts/metabolism , Genetic Association Studies , Genetic Predisposition to Disease , Humans , Lysine-tRNA Ligase/chemistry , Lysine-tRNA Ligase/metabolism , Magnetic Resonance Imaging , Models, Molecular , Nervous System Diseases/diagnosis , Optic Nerve Diseases/diagnosis , Pedigree , Protein Binding , Protein Conformation , Sensation Disorders/diagnosis , p38 Mitogen-Activated Protein Kinases/metabolism
9.
Biochim Biophys Acta Gene Regul Mech ; 1861(4): 387-400, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29155070

ABSTRACT

Prokaryotic and eukaryotic cytosolic aminoacyl-tRNA synthetases (aaRSs) are essentially known for their conventional function of generating the full set of aminoacyl-tRNA species that are needed to incorporate each organism's repertoire of genetically-encoded amino acids during ribosomal translation of messenger RNAs. However, bacterial and eukaryotic cytosolic aaRSs have been shown to exhibit other essential nonconventional functions. Here we review all the subcellular compartments that prokaryotic and eukaryotic cytosolic aaRSs can reach to exert either a conventional or nontranslational role. We describe the physiological and stress conditions, the mechanisms and the signaling pathways that trigger their relocation and the new functions associated with these relocating cytosolic aaRS. Finally, given that these relocating pools of cytosolic aaRSs participate to a wide range of cellular pathways beyond translation, but equally important for cellular homeostasis, we mention some of the pathologies and diseases associated with the dis-regulation or malfunctioning of these nontranslational functions.


Subject(s)
Amino Acids/metabolism , Amino Acyl-tRNA Synthetases/physiology , Cytosol/enzymology , RNA, Transfer/metabolism , Transfer RNA Aminoacylation/physiology , Amino Acyl-tRNA Synthetases/genetics , Animals , Bacterial Proteins/genetics , Bacterial Proteins/physiology , Biological Transport , Cytokines/biosynthesis , Eukaryotic Cells/enzymology , HIV/physiology , Host-Pathogen Interactions , Humans , Membrane Proteins/physiology , Mitochondria/metabolism , Mitochondrial Proteins/physiology , Neoplasm Proteins/physiology , Neovascularization, Physiologic/physiology , Phagocytosis/physiology , Prokaryotic Cells/enzymology , Protein Isoforms/physiology , Rous sarcoma virus/physiology , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/physiology , Species Specificity , Vertebrates/genetics , Vertebrates/metabolism
10.
PLoS Pathog ; 13(12): e1006725, 2017 12.
Article in English | MEDLINE | ID: mdl-29211798

ABSTRACT

Leptospirosis is a widespread zoonosis, potentially severe in humans, caused by spirochetal bacteria, Leptospira interrogans (L. interrogans). Host defense mechanisms involved in leptospirosis are poorly understood. Recognition of lipopolysaccharide (LPS) and lipoproteins by Toll-Like Receptors (TLR)4 and TLR2 is crucial for clearance of leptospires in mice, yet the role of Nucleotide Oligomerization Domain (NOD)-like receptors (NOD)1 and NOD2, recognizing peptidoglycan (PG) fragments has not previously been examined. Here, we show that pathogenic leptospires escape from NOD1 and NOD2 recognition both in vitro and in vivo, in mice. We found that leptospiral PG is resistant to digestion by certain hydrolases and that a conserved outer membrane lipoprotein of unknown function, LipL21, specific for pathogenic leptospires, is tightly bound to the PG. Leptospiral PG prepared from a mutant not expressing LipL21 (lipl21-) was more readily digested than the parental or complemented strains. Muropeptides released from the PG of the lipl21- mutant, or prepared using a procedure to eliminate the LipL21 protein from the PG of the parental strain, were recognized in vitro by the human NOD1 (hNOD1) and NOD2 (hNOD2) receptors, suggesting that LipL21 protects PG from degradation into muropeptides. LipL21 expressed in E. coli also resulted in impaired PG digestion and NOD signaling. We found that murine NOD1 (mNOD1) did not recognize PG of L. interrogans. This result was confirmed by mass spectrometry showing that leptospiral PG was primarily composed of MurTriDAP, the natural agonist of hNOD1, and contained only trace amounts of the tetra muropeptide, the mNOD1 agonist. Finally, in transgenic mice expressing human NOD1 and deficient for the murine NOD1, we showed enhanced clearance of a lipl21- mutant compared to the complemented strain, or to what was observed in NOD1KO mice, suggesting that LipL21 facilitates escape from immune surveillance in humans. These novel mechanisms allowing L. interrogans to escape recognition by the NOD receptors may be important in circumventing innate host responses.


Subject(s)
Antigens, Bacterial/metabolism , Bacterial Outer Membrane Proteins/metabolism , Immune Evasion , Leptospira interrogans/immunology , Leptospira interrogans/pathogenicity , Lipoproteins/metabolism , Nod1 Signaling Adaptor Protein/immunology , Nod2 Signaling Adaptor Protein/immunology , Peptidoglycan/metabolism , Animals , Antigens, Bacterial/genetics , Antigens, Bacterial/immunology , Bacterial Outer Membrane Proteins/genetics , Bacterial Outer Membrane Proteins/immunology , Female , Humans , Immune Evasion/genetics , Immunity, Innate , Leptospira/immunology , Leptospira interrogans/genetics , Leptospirosis/genetics , Leptospirosis/immunology , Leptospirosis/microbiology , Lipoproteins/genetics , Lipoproteins/immunology , Male , Mass Spectrometry , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Mutation , Nod1 Signaling Adaptor Protein/deficiency , Nod1 Signaling Adaptor Protein/genetics , Nod2 Signaling Adaptor Protein/deficiency , Nod2 Signaling Adaptor Protein/genetics , Peptidoglycan/chemistry , Peptidoglycan/immunology , Protein Binding , Signal Transduction , Species Specificity , Virulence/genetics , Virulence/immunology
11.
PLoS Pathog ; 12(12): e1006018, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27923069

ABSTRACT

Metal acquisition is crucial for all cells and for the virulence of many bacterial pathogens. In particular, nickel is a virulence determinant for the human gastric pathogen Helicobacter pylori as it is the cofactor of two enzymes essential for in vivo colonization, urease and a [NiFe] hydrogenase. To import nickel despite its scarcity in the human body, H. pylori requires efficient uptake mechanisms that are only partially defined. Indeed, alternative ways of nickel entry were predicted to exist in addition to the well-described NixA permease. Using a genetic screen, we identified an ABC transporter, that we designated NiuBDE, as a novel H. pylori nickel transport system. Unmarked mutants carrying deletions of nixA, niuD and/or niuB, were constructed and used to measure (i) tolerance to toxic nickel exposure, (ii) intracellular nickel content by ICP-OES, (iii) transport of radioactive nickel and (iv) expression of a reporter gene controlled by nickel concentration. We demonstrated that NiuBDE and NixA function separately and are the sole nickel transporters in H. pylori. NiuBDE, but not NixA, also transports cobalt and bismuth, a metal currently used in H. pylori eradication therapy. Both NiuBDE and NixA participate in nickel-dependent urease activation at pH 5 and survival under acidic conditions mimicking those encountered in the stomach. However, only NiuBDE is able to carry out this activity at neutral pH and is essential for colonization of the mouse stomach. Phylogenomic analyses indicated that both nixA and niuBDE genes have been acquired via horizontal gene transfer by the last common ancestor of the gastric Helicobacter species. Our work highlights the importance of this evolutionary event for the emergence of Helicobacter gastric species that are adapted to the hostile environment of the stomach where the capacity of Helicobacter to import nickel and thereby activate urease needs to be optimized.


Subject(s)
ATP-Binding Cassette Transporters/metabolism , Bacterial Proteins/metabolism , Helicobacter pylori/metabolism , Nickel/metabolism , Virulence/physiology , ATP-Binding Cassette Transporters/genetics , Animals , Bacterial Proteins/genetics , Biological Evolution , Biological Transport/physiology , Disease Models, Animal , Helicobacter Infections/metabolism , Helicobacter pylori/genetics , Helicobacter pylori/pathogenicity , Mice , Phylogeny
12.
PLoS Pathog ; 11(12): e1005312, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26641249

ABSTRACT

Metal acquisition and intracellular trafficking are crucial for all cells and metal ions have been recognized as virulence determinants in bacterial pathogens. Virulence of the human gastric pathogen Helicobacter pylori is dependent on nickel, cofactor of two enzymes essential for in vivo colonization, urease and [NiFe] hydrogenase. We found that two small paralogous nickel-binding proteins with high content in Histidine (Hpn and Hpn-2) play a central role in maintaining non-toxic intracellular nickel content and in controlling its intracellular trafficking. Measurements of metal resistance, intracellular nickel contents, urease activities and interactomic analysis were performed. We observed that Hpn acts as a nickel-sequestration protein, while Hpn-2 is not. In vivo, Hpn and Hpn-2 form homo-multimers, interact with each other, Hpn interacts with the UreA urease subunit while Hpn and Hpn-2 interact with the HypAB hydrogenase maturation proteins. In addition, Hpn-2 is directly or indirectly restricting urease activity while Hpn is required for full urease activation. Based on these data, we present a model where Hpn and Hpn-2 participate in a common pathway of controlled nickel transfer to urease. Using bioinformatics and top-down proteomics to identify the predicted proteins, we established that Hpn-2 is only expressed by H. pylori and its closely related species Helicobacter acinonychis. Hpn was detected in every gastric Helicobacter species tested and is absent from the enterohepatic Helicobacter species. Our phylogenomic analysis revealed that Hpn acquisition was concomitant with the specialization of Helicobacter to colonization of the gastric environment and the duplication at the origin of hpn-2 occurred in the common ancestor of H. pylori and H. acinonychis. Finally, Hpn and Hpn-2 were found to be required for colonization of the mouse model by H. pylori. Our data show that during evolution of the Helicobacter genus, acquisition of Hpn and Hpn-2 by gastric Helicobacter species constituted a decisive evolutionary event to allow Helicobacter to colonize the hostile gastric environment, in which no other bacteria persistently thrives. This acquisition was key for the emergence of one of the most successful bacterial pathogens, H. pylori.


Subject(s)
Bacterial Proteins/metabolism , Biological Evolution , Helicobacter Infections/metabolism , Helicobacter pylori/genetics , Helicobacter pylori/pathogenicity , Amino Acid Sequence , Animals , Bacterial Proteins/genetics , Chromatography, Liquid , Disease Models, Animal , Helicobacter/genetics , Helicobacter/metabolism , Helicobacter/pathogenicity , Helicobacter pylori/metabolism , Immunoblotting , Mice , Molecular Sequence Data , Nickel/metabolism , Phylogeny , Proteins/metabolism , Proteomics , Tandem Mass Spectrometry , Urease/metabolism
13.
Genome Biol Evol ; 7(9): 2692-704, 2015 Sep 04.
Article in English | MEDLINE | ID: mdl-26342139

ABSTRACT

By competing for the acquisition of essential nutrients, Helicobacter pylori has the unique ability to persist in the human stomach, also causing nutritional insufficiencies in the host. Although the H. pylori genome apparently encodes selenocysteine synthase (SelA, HP1513), a key pyridoxal phosphate (PLP)-dependent enzyme for the incorporation of selenium into bacterial proteins, nothing is known about the use of this essential element in protein synthesis by this pathogen. We analyzed the evolution of the complete machinery for incorporation of selenium into proteins and the selenoproteome of several H. pylori strains and related Epsilonproteobacteria. Our searches identified the presence of selenoproteins-including the previously unknown DUF466 family-in various Epsilonproteobacteria, but not in H. pylori. We found that a complete system for selenocysteine incorporation was present in the Helicobacteriaceae ancestor and has been recently lost before the split of Helicobacter acinonychis and H. pylori. Our results indicate that H. pylori, at variance with other gastric and enterohepatic Helicobacter, does not use selenocysteine in protein synthesis and does not use selenium for tRNA wobble base modification. However, selA has survived as a functional gene, having lost the domain for the binding of selenocysteine tRNA, but maintaining the ability to bind the PLP cofactor. The evolutionary modifications described for the SelA protein of H. pylori find parallels in other bacterial and archaeal species, suggesting that an alternative enzymatic function is hidden in many proteins annotated as selenocysteinyl-tRNA synthase.


Subject(s)
Epsilonproteobacteria/genetics , Evolution, Molecular , Helicobacter pylori/enzymology , Selenoproteins/genetics , Transferases/genetics , Amino Acid Sequence , Conserved Sequence , Helicobacter pylori/genetics , Proteome/genetics , RNA, Transfer, Amino Acid-Specific/chemistry , RNA, Transfer, Amino Acid-Specific/genetics , Sequence Alignment , Transferases/chemistry
14.
J Infect Dis ; 210(9): 1357-66, 2014 Nov 01.
Article in English | MEDLINE | ID: mdl-24837402

ABSTRACT

BACKGROUND: Limitations in treatment of biofilm-associated bacterial infections are often due to subpopulation of persistent bacteria (persisters) tolerant to high concentrations of antibiotics. Based on the increased aminoglycoside efficiency under alkaline conditions, we studied the combination of gentamicin and the clinically compatible basic amino acid L-arginine against planktonic and biofilm bacteria both in vitro and in vivo. METHODS: Using Staphylococcus aureus, Pseudomonas aeruginosa and Escherichia coli bioluminescent strains, we studied the combination of L-arginine and gentamicin against planktonic persisters through time-kill curves of late stationary-phase cultures. In vitro biofilm tolerance towards gentamicin was assessed using PVC 96 well-plates assays. Efficacy of gentamicin as antibiotic lock treatment (ALT) at 5 mg/mL at different pH was evaluated in vivo using a model of totally implantable venous access port (TIVAP) surgically implanted in rats. RESULTS: We demonstrated that a combination of gentamicin and the clinically compatible basic amino acid L-arginine increases in vitro planktonic and biofilm susceptibility to gentamicin, with 99% mortality amongst clinically relevant pathogens, i.e. S. aureus, E. coli and P. aeruginosa persistent bacteria. Moreover, although gentamicin local treatment alone showed poor efficacy in a clinically relevant in vivo model of catheter-related infection, gentamicin supplemented with L-arginine led to complete, long-lasting eradication of S. aureus and E. coli biofilms, when used locally. CONCLUSION: Given that intravenous administration of L-arginine to human patients is well tolerated, combined use of aminoglycoside and the non-toxic adjuvant L-arginine as catheter lock solution could constitute a new option for the eradication of pathogenic biofilms.


Subject(s)
Anti-Bacterial Agents/pharmacology , Arginine/pharmacology , Biofilms/drug effects , Gentamicins/pharmacology , Animals , Arginine/administration & dosage , Catheter-Related Infections/drug therapy , Catheter-Related Infections/prevention & control , Central Venous Catheters/adverse effects , Central Venous Catheters/microbiology , Drug Synergism , Drug Therapy, Combination , Escherichia coli/drug effects , Escherichia coli Infections/drug therapy , Escherichia coli Infections/prevention & control , Gentamicins/administration & dosage , Hydrogen-Ion Concentration , In Vitro Techniques , Pseudomonas Infections/drug therapy , Pseudomonas Infections/prevention & control , Pseudomonas aeruginosa/drug effects , Rats , Staphylococcal Infections/drug therapy , Staphylococcal Infections/prevention & control , Staphylococcus aureus/drug effects
15.
Nucleic Acids Res ; 42(9): 6052-63, 2014 May.
Article in English | MEDLINE | ID: mdl-24692665

ABSTRACT

Yeast mitochondrial Gln-mtRNAGln is synthesized by the transamidation of mischarged Glu-mtRNAGln by a non-canonical heterotrimeric tRNA-dependent amidotransferase (AdT). The GatA and GatB subunits of the yeast AdT (GatFAB) are well conserved among bacteria and eukaryota, but the GatF subunit is a fungi-specific ortholog of the GatC subunit found in all other known heterotrimeric AdTs (GatCAB). Here we report the crystal structure of yeast mitochondrial GatFAB at 2.0 Å resolution. The C-terminal region of GatF encircles the GatA-GatB interface in the same manner as GatC, but the N-terminal extension domain (NTD) of GatF forms several additional hydrophobic and hydrophilic interactions with GatA. NTD-deletion mutants displayed growth defects, but retained the ability to respire. Truncation of the NTD in purified mutants reduced glutaminase and transamidase activities when glutamine was used as the ammonia donor, but increased transamidase activity relative to the full-length enzyme when the donor was ammonium chloride. Our structure-based functional analyses suggest the NTD is a trans-acting scaffolding peptide for the GatA glutaminase active site. The positive surface charge and novel fold of the GatF-GatA interface, shown in this first crystal structure of an organellar AdT, stand in contrast with the more conventional, negatively charged bacterial AdTs described previously.


Subject(s)
Amino Acyl-tRNA Synthetases/chemistry , Mitochondrial Proteins/chemistry , Nitrogenous Group Transferases/chemistry , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae/enzymology , Transaminases/chemistry , Catalytic Domain , Crystallography, X-Ray , Mitochondria/enzymology , Models, Molecular , Protein Binding , Protein Multimerization , Protein Structure, Quaternary , Protein Structure, Secondary , Protein Subunits/chemistry , RNA, Transfer/chemistry
16.
J Biol Chem ; 288(6): 3816-22, 2013 Feb 08.
Article in English | MEDLINE | ID: mdl-23258533

ABSTRACT

Many bacteria lack genes encoding asparaginyl- and/or glutaminyl-tRNA synthetase and consequently rely on an indirect path for the synthesis of both Asn-tRNA(Asn) and Gln-tRNA(Gln). In some bacteria such as Thermus thermophilus, efficient delivery of misacylated tRNA to the downstream amidotransferase (AdT) is ensured by formation of a stable, tRNA-dependent macromolecular complex called the Asn-transamidosome. This complex enables direct delivery of Asp-tRNA(Asn) from the non-discriminating aspartyl-tRNA synthetase to AdT, where it is converted into Asn-tRNA(Asn). Previous characterization of the analogous Helicobacter pylori Asn-transamidosome revealed that it is dynamic and cannot be stably isolated, suggesting the possibility of an alternative mechanism to facilitate assembly of a stable complex. We have identified a novel protein partner called Hp0100 as a component of a stable, tRNA-independent H. pylori Asn-transamidosome; this complex contains a non-discriminating aspartyl-tRNA synthetase, AdT, and Hp0100 but does not require tRNA(Asn) for assembly. Hp0100 also enhances the capacity of AdT to convert Asp-tRNA(Asn) into Asn-tRNA(Asn) by ∼35-fold. Our results demonstrate that bacteria have adopted multiple divergent methods for transamidosome assembly and function.


Subject(s)
Amidinotransferases/metabolism , Bacterial Proteins/metabolism , Helicobacter pylori/enzymology , Multienzyme Complexes/metabolism , RNA, Bacterial/metabolism , RNA, Transfer, Amino Acyl/metabolism , Amidinotransferases/genetics , Bacterial Proteins/genetics , Helicobacter pylori/genetics , Multienzyme Complexes/genetics , RNA, Bacterial/genetics , RNA, Transfer, Amino Acyl/genetics
17.
Biochem Mol Biol Educ ; 40(6): 372-82, 2012.
Article in English | MEDLINE | ID: mdl-23166025

ABSTRACT

Dynamic light scattering (DLS) analyses are routinely used in biology laboratories to detect aggregates in macromolecular solutions, to determine the size of proteins, nucleic acids, and complexes or to monitor the binding of ligands. This article is written for graduate and undergraduate students with access to DLS and for faculty members who wish to incorporate DLS into a lab activity, a practical course or research. It reviews the basic concepts of light scattering measurements and addresses four critical aspects of the analysis and interpretation of DLS results. To ensure reproducible quantitative data, attention should be paid to controlling the preparation and handling of proteins or assemblies because variations in the state of aggregation, induced by minor changes in experimental condition or technique, might compromise DLS results and affect protein activity. Variables like temperature, solvent viscosity, and inter-particle interactions may also influence particle size determination. Every point is illustrated by case studies, including a commercially available albumin, a small RNA virus isolated from plants, as well as four soluble proteins and a ribonucleoprotein assembly purified and characterized by students in the frame of their master degree.


Subject(s)
Biochemistry/education , Light , Proteins/analysis , Proteins/chemistry , Scattering, Radiation , Humans , Students
18.
Nucleic Acids Res ; 40(11): 4965-76, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22362756

ABSTRACT

Helicobacter pylori catalyzes Asn-tRNA(Asn) formation by use of the indirect pathway that involves charging of Asp onto tRNA(Asn) by a non-discriminating aspartyl-tRNA synthetase (ND-AspRS), followed by conversion of the mischarged Asp into Asn by the GatCAB amidotransferase. We show that the partners of asparaginylation assemble into a dynamic Asn-transamidosome, which uses a different strategy than the Gln-transamidosome to prevent the release of the mischarged aminoacyl-tRNA intermediate. The complex is described by gel-filtration, dynamic light scattering and kinetic measurements. Two strategies for asparaginylation are shown: (i) tRNA(Asn) binds GatCAB first, allowing aminoacylation and immediate transamidation once ND-AspRS joins the complex; (ii) tRNA(Asn) is bound by ND-AspRS which releases the Asp-tRNA(Asn) product much slower than the cognate Asp-tRNA(Asp); this kinetic peculiarity allows GatCAB to bind and transamidate Asp-tRNA(Asn) before its release by the ND-AspRS. These results are discussed in the context of the interrelation between the Asn and Gln-transamidosomes which use the same GatCAB in H. pylori, and shed light on a kinetic mechanism that ensures faithful codon reassignment for Asn.


Subject(s)
Aspartate-tRNA Ligase/metabolism , Helicobacter pylori/enzymology , Nitrogenous Group Transferases/metabolism , RNA, Transfer, Asn/metabolism , Transfer RNA Aminoacylation , Asparagine/metabolism , Aspartic Acid/metabolism , Genetic Code , Kinetics , RNA, Transfer, Asp/metabolism
19.
Nucleic Acids Res ; 39(21): 9306-15, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21813455

ABSTRACT

In many bacteria and archaea, an ancestral pathway is used where asparagine and glutamine are formed from their acidic precursors while covalently linked to tRNA(Asn) and tRNA(Gln), respectively. Stable complexes formed by the enzymes of these indirect tRNA aminoacylation pathways are found in several thermophilic organisms, and are called transamidosomes. We describe here a transamidosome forming Gln-tRNA(Gln) in Helicobacter pylori, an ε-proteobacterium pathogenic for humans; this transamidosome displays novel properties that may be characteristic of mesophilic organisms. This ternary complex containing the non-canonical GluRS2 specific for Glu-tRNA(Gln) formation, the tRNA-dependent amidotransferase GatCAB and tRNA(Gln) was characterized by dynamic light scattering. Moreover, we observed by interferometry a weak interaction between GluRS2 and GatCAB (K(D) = 40 ± 5 µM). The kinetics of Glu-tRNA(Gln) and Gln-tRNA(Gln) formation indicate that conformational shifts inside the transamidosome allow the tRNA(Gln) acceptor stem to interact alternately with GluRS2 and GatCAB despite their common identity elements. The integrity of this dynamic transamidosome depends on a critical concentration of tRNA(Gln), above which it dissociates into separate GatCAB/tRNA(Gln) and GluRS2/tRNA(Gln) complexes. Ester bond protection assays show that both enzymes display a good affinity for tRNA(Gln) regardless of its aminoacylation state, and support a mechanism where GluRS2 can hydrolyze excess Glu-tRNA(Gln), ensuring faithful decoding of Gln codons.


Subject(s)
Glutamate-tRNA Ligase/metabolism , Helicobacter pylori/enzymology , Nitrogenous Group Transferases/metabolism , RNA, Transfer, Amino Acyl/metabolism , RNA, Transfer, Gln/metabolism , Helicobacter pylori/genetics , Hydrolysis , Interferometry , Kinetics , Models, Biological , RNA Stability
20.
EMBO J ; 29(18): 3118-29, 2010 Sep 15.
Article in English | MEDLINE | ID: mdl-20717102

ABSTRACT

Four out of the 22 aminoacyl-tRNAs (aa-tRNAs) are systematically or alternatively synthesized by an indirect, two-step route requiring an initial mischarging of the tRNA followed by tRNA-dependent conversion of the non-cognate amino acid. During tRNA-dependent asparagine formation, tRNA(Asn) promotes assembly of a ribonucleoprotein particle called transamidosome that allows channelling of the aa-tRNA from non-discriminating aspartyl-tRNA synthetase active site to the GatCAB amidotransferase site. The crystal structure of the Thermus thermophilus transamidosome determined at 3 A resolution reveals a particle formed by two GatCABs, two dimeric ND-AspRSs and four tRNAs(Asn) molecules. In the complex, only two tRNAs are bound in a functional state, whereas the two other ones act as an RNA scaffold enabling release of the asparaginyl-tRNA(Asn) without dissociation of the complex. We propose that the crystal structure represents a transient state of the transamidation reaction. The transamidosome constitutes a transfer-ribonucleoprotein particle in which tRNAs serve the function of both substrate and structural foundation for a large molecular machine.


Subject(s)
Asparagine/biosynthesis , RNA, Transfer, Asn/metabolism , Ribonucleoproteins/chemistry , Crystallization , Nitrogenous Group Transferases/metabolism , Protein Conformation , Ribonucleoproteins/isolation & purification , Ribonucleoproteins/metabolism , Thermus thermophilus/metabolism , Transfer RNA Aminoacylation
SELECTION OF CITATIONS
SEARCH DETAIL
...