Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
JMIR Hum Factors ; 8(3): e21810, 2021 Sep 16.
Article in English | MEDLINE | ID: mdl-34528892

ABSTRACT

BACKGROUND: Third-party cloud-based data analysis applications are proliferating in electronic health (eHealth) because of the expertise offered and their monetary advantage. However, privacy and security are critical concerns when handling sensitive medical data in the cloud. Technical advances based on "crypto magic" in privacy-preserving machine learning (ML) enable data analysis in encrypted form for maintaining confidentiality. Such privacy-enhancing technologies (PETs) could be counterintuitive to relevant stakeholders in eHealth, which could in turn hinder adoption; thus, more attention is needed on human factors for establishing trust and transparency. OBJECTIVE: The aim of this study was to analyze eHealth expert stakeholders' perspectives and the perceived tradeoffs in regard to data analysis on encrypted medical data in the cloud, and to derive user requirements for development of a privacy-preserving data analysis tool. METHODS: We used semistructured interviews and report on 14 interviews with individuals having medical, technical, or research expertise in eHealth. We used thematic analysis for analyzing interview data. In addition, we conducted a workshop for eliciting requirements. RESULTS: Our results show differences in the understanding of and in trusting the technology; caution is advised by technical experts, whereas patient safety assurances are required by medical experts. Themes were identified with general perspectives on data privacy and practices (eg, acceptance of using external services), as well as themes highlighting specific perspectives (eg, data protection drawbacks and concerns of the data analysis on encrypted data). The latter themes result in requiring assurances and conformance testing for trusting tools such as the proposed ML-based tool. Communicating privacy, and utility benefits and tradeoffs with stakeholders is essential for trust. Furthermore, stakeholders and their organizations share accountability of patient data. Finally, stakeholders stressed the importance of informing patients about the privacy of their data. CONCLUSIONS: Understanding the benefits and risks of using eHealth PETs is crucial, and collaboration among diverse stakeholders is essential. Assurances of the tool's privacy, accuracy, and patient safety should be in place for establishing trust of ML-based PETs, especially if used in the cloud.

2.
Stud Health Technol Inform ; 264: 1223-1227, 2019 Aug 21.
Article in English | MEDLINE | ID: mdl-31438120

ABSTRACT

Community health workers in primary care programs increasingly use Mobile Health Data Collection Systems (MDCSs) to report their activities and conduct health surveys, replacing paper-based approaches. The mHealth systems are inherently privacy invasive, thus informing individuals and obtaining their consent is important to protect their rights to privacy. In this paper, we introduce an e-Consent tool tailored for MDCSs. It is developed based on the requirement analysis of consent management for data privacy and built upon the solutions of Participant-Centered Consent toolkit and Consent Receipt specification. The e-Consent solution has been evaluated in a usability study. The study results show that the design is useful for informing individuals on the nature of data processing, allowing them to make informed decisions.


Subject(s)
Privacy , Telemedicine , Health Surveys , Humans , Informed Consent , Public Health
3.
JMIR Mhealth Uhealth ; 7(3): e11642, 2019 03 20.
Article in English | MEDLINE | ID: mdl-30892275

ABSTRACT

BACKGROUND: Community-based primary care focuses on health promotion, awareness raising, and illnesses treatment and prevention in individuals, groups, and communities. Community Health Workers (CHWs) are the leading actors in such programs, helping to bridge the gap between the population and the health system. Many mobile health (mHealth) initiatives have been undertaken to empower CHWs and improve the data collection process in the primary care, replacing archaic paper-based approaches. A special category of mHealth apps, known as mHealth Data Collection Systems (MDCSs), is often used for such tasks. These systems process highly sensitive personal health data of entire communities so that a careful consideration about privacy is paramount for any successful deployment. However, the mHealth literature still lacks methodologically rigorous analyses for privacy and data protection. OBJECTIVE: In this paper, a Privacy Impact Assessment (PIA) for MDCSs is presented, providing a systematic identification and evaluation of potential privacy risks, particularly emphasizing controls and mitigation strategies to handle negative privacy impacts. METHODS: The privacy analysis follows a systematic methodology for PIAs. As a case study, we adopt the GeoHealth system, a large-scale MDCS used by CHWs in the Family Health Strategy, the Brazilian program for delivering community-based primary care. All the PIA steps were taken on the basis of discussions among the researchers (privacy and security experts). The identification of threats and controls was decided particularly on the basis of literature reviews and working group meetings among the group. Moreover, we also received feedback from specialists in primary care and software developers of other similar MDCSs in Brazil. RESULTS: The GeoHealth PIA is based on 8 Privacy Principles and 26 Privacy Targets derived from the European General Data Protection Regulation. Associated with that, 22 threat groups with a total of 97 subthreats and 41 recommended controls were identified. Among the main findings, we observed that privacy principles can be enhanced on existing MDCSs with controls for managing consent, transparency, intervenability, and data minimization. CONCLUSIONS: Although there has been significant research that deals with data security issues, attention to privacy in its multiple dimensions is still lacking for MDCSs in general. New systems have the opportunity to incorporate privacy and data protection by design. Existing systems will have to address their privacy issues to comply with new and upcoming data protection regulations. However, further research is still needed to identify feasible and cost-effective solutions.


Subject(s)
Confidentiality/standards , Primary Health Care/methods , Telemedicine/standards , Brazil , Computer Security/standards , Data Collection/methods , Data Collection/standards , Government Programs/methods , Government Programs/trends , Humans , Mobile Applications/trends , Primary Health Care/trends , Telemedicine/instrumentation
4.
J Med Internet Res ; 20(12): e10954, 2018 12 21.
Article in English | MEDLINE | ID: mdl-30578189

ABSTRACT

BACKGROUND: Patients' privacy is regarded as essential for the patient-doctor relationship. One example of a privacy-enhancing technology for user-controlled data minimization on content level is a redactable signature. It enables users to redact personal information from signed documents while preserving the validity of the signature, and thus the authenticity of the document. In this study, we present end users' evaluations of a Cloud-based selective authentic electronic health record (EHR) exchange service (SAE-service) in an electronic health use case. In the use case scenario, patients were given control to redact specified information fields in their EHR, which were signed by their doctors with a redactable signature and transferred to them into a Cloud platform. They can then selectively disclose the remaining information in the EHR, which still bears the valid digital signature, to third parties of their choice. OBJECTIVE: This study aimed to explore the perceptions, attitudes, and mental models concerning the SAE-service of 2 user roles: signers (medical professionals) and redactors (patients with different technical knowledge) in Germany and Sweden. Another objective was to elicit usability requirements for this service based on the analysis of our investigation. METHODS: We chose empirical qualitative methods to address our research objective. Designs of mock-ups for the service were used as part of our user-centered design approach in our studies with test participants from Germany and Sweden. A total of 13 individual walk-throughs or interviews were conducted with medical staff to investigate the EHR signers' perspectives. Moreover, 5 group walk-throughs in focus groups sessions with (N=32) prospective patients with different technical knowledge to investigate redactor's perspective of EHR data redaction control were used. RESULTS: We found that our study participants had correct mental models with regard to the redaction process. Users with some technical models lacked trust in the validity of the doctor's signature on the redacted documents. Main results to be considered are the requirements concerning the accountability of the patients' redactions and the design of redaction templates for guidance and control. CONCLUSIONS: For the SAE-service to be means for enhancing patient control and privacy, the diverse usability and trust factors of different user groups should be considered.


Subject(s)
Confidentiality/standards , Electronic Health Records/standards , Health Personnel/legislation & jurisprudence , Patients/legislation & jurisprudence , Privacy/legislation & jurisprudence , Humans , Prospective Studies , Qualitative Research
SELECTION OF CITATIONS
SEARCH DETAIL
...