Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Mol Cell ; 80(6): 933-934, 2020 12 17.
Article in English | MEDLINE | ID: mdl-33338407

ABSTRACT

Pfeil et al., (2020) examine the mechanism of Gi-stimulated Ca2+ release in cells and find an unexpected role for Gαq in Gßγ-dependent activation of phospholipase Cß (PLCß).


Subject(s)
Calcium , GTP-Binding Protein alpha Subunits, Gq-G11 , Calcium/metabolism , GTP-Binding Protein alpha Subunits, Gq-G11/metabolism , Phospholipase C beta/genetics , Phospholipase C beta/metabolism , Signal Transduction
2.
J Biol Chem ; 295(49): 16562-16571, 2020 12 04.
Article in English | MEDLINE | ID: mdl-32948655

ABSTRACT

Phospholipase Cε (PLCε) is activated downstream of G protein-coupled receptors and receptor tyrosine kinases through direct interactions with small GTPases, including Rap1A and Ras. Although Ras has been reported to allosterically activate the lipase, it is not known whether Rap1A has the same ability or what its molecular mechanism might be. Rap1A activates PLCε in response to the stimulation of ß-adrenergic receptors, translocating the complex to the perinuclear membrane. Because the C-terminal Ras association (RA2) domain of PLCε was proposed to the primary binding site for Rap1A, we first confirmed using purified proteins that the RA2 domain is indeed essential for activation by Rap1A. However, we also showed that the PLCε pleckstrin homology (PH) domain and first two EF hands (EF1/2) are required for Rap1A activation and identified hydrophobic residues on the surface of the RA2 domain that are also necessary. Small-angle X-ray scattering showed that Rap1A binding induces and stabilizes discrete conformational states in PLCε variants that can be activated by the GTPase. These data, together with the recent structure of a catalytically active fragment of PLCε, provide the first evidence that Rap1A, and by extension Ras, allosterically activate the lipase by promoting and stabilizing interactions between the RA2 domain and the PLCε core.


Subject(s)
Phosphoinositide Phospholipase C/metabolism , rap1 GTP-Binding Proteins/metabolism , Allosteric Regulation , GTP Phosphohydrolases/metabolism , Humans , Models, Molecular , Mutagenesis, Site-Directed , Phosphoinositide Phospholipase C/chemistry , Phosphoinositide Phospholipase C/genetics , Pleckstrin Homology Domains , Protein Binding , Protein Domains , Protein Structure, Tertiary , Protein Transport , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification , Scattering, Small Angle , X-Ray Diffraction , rap1 GTP-Binding Proteins/chemistry , rap1 GTP-Binding Proteins/genetics
3.
Structure ; 28(7): 810-819.e5, 2020 07 07.
Article in English | MEDLINE | ID: mdl-32402248

ABSTRACT

Phospholipase C (PLC) enzymes hydrolyze phosphoinositide lipids to inositol phosphates and diacylglycerol. Direct activation of PLCß by Gαq and/or Gßγ subunits mediates signaling by Gq and some Gi coupled G-protein-coupled receptors (GPCRs), respectively. PLCß isoforms contain a unique C-terminal extension, consisting of proximal and distal C-terminal domains (CTDs) separated by a flexible linker. The structure of PLCß3 bound to Gαq is known, however, for both Gαq and Gßγ; the mechanism for PLCß activation on membranes is unknown. We examined PLCß2 dynamics on membranes using hydrogen-deuterium exchange mass spectrometry (HDX-MS). Gßγ caused a robust increase in dynamics of the distal C-terminal domain (CTD). Gαq showed decreased deuterium incorporation at the Gαq binding site on PLCß. In vitro Gßγ-dependent activation of PLC is inhibited by the distal CTD. The results suggest that disruption of autoinhibitory interactions with the CTD leads to increased PLCß hydrolase activity.


Subject(s)
GTP-Binding Protein alpha Subunits, Gq-G11/chemistry , GTP-Binding Protein beta Subunits/chemistry , GTP-Binding Protein gamma Subunits/chemistry , Phospholipase C beta/chemistry , Allosteric Regulation , Animals , Binding Sites , COS Cells , Chlorocebus aethiops , GTP-Binding Protein alpha Subunits, Gq-G11/metabolism , GTP-Binding Protein beta Subunits/metabolism , GTP-Binding Protein gamma Subunits/metabolism , Phospholipase C beta/metabolism , Protein Binding , Sf9 Cells , Spodoptera
4.
Neurobiol Dis ; 54: 289-96, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23318931

ABSTRACT

Triose phosphate isomerase (TPI) is responsible for the interconversion of dihydroxyacetone phosphate to glyceraldehyde-3-phosphate in glycolysis. Point mutations in this gene are associated with a glycolytic enzymopathy called TPI deficiency. This study utilizes a Drosophila melanogaster model of TPI deficiency; TPI(sugarkill) is a mutant allele with a missense mutation (M80T) that causes phenotypes similar to human TPI deficiency. In this study, the redox status of TPI(sugarkill) flies was examined and manipulated to provide insight into the pathogenesis of this disease. Our data show that TPI(sugarkill) animals exhibit higher levels of the oxidized forms of NAD(+), NADP(+) and glutathione in an age-dependent manner. Additionally, we demonstrate that mitochondrial redox state is significantly more oxidized in TPI(sugarkill) animals. We hypothesized that TPI(sugarkill) animals may be more sensitive to oxidative stress and that this may underlie the progressive nature of disease pathogenesis. The effect of oxidizing and reducing stressors on behavioral phenotypes of the TPI(sugarkill) animals was tested. As predicted, oxidative stress worsened these phenotypes. Importantly, we discovered that reducing stress improved the behavioral and longevity phenotypes of the mutant organism without having an effect on TPI(sugarkill) protein levels. Overall, these data suggest that reduced activity of TPI leads to an oxidized redox state in these mutants and that the alleviation of this stress using reducing compounds can improve the mutant phenotypes.


Subject(s)
Mitochondria/metabolism , Oxidative Stress/physiology , Triose-Phosphate Isomerase/deficiency , Anemia, Hemolytic, Congenital Nonspherocytic/genetics , Anemia, Hemolytic, Congenital Nonspherocytic/metabolism , Animals , Blotting, Western , Drosophila melanogaster , Oxidation-Reduction , Point Mutation , Triose-Phosphate Isomerase/genetics
SELECTION OF CITATIONS
SEARCH DETAIL