Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 114(36): 9575-9580, 2017 09 05.
Article in English | MEDLINE | ID: mdl-28827323

ABSTRACT

Human appropriation of land for agriculture has greatly altered the terrestrial carbon balance, creating a large but uncertain carbon debt in soils. Estimating the size and spatial distribution of soil organic carbon (SOC) loss due to land use and land cover change has been difficult but is a critical step in understanding whether SOC sequestration can be an effective climate mitigation strategy. In this study, a machine learning-based model was fitted using a global compilation of SOC data and the History Database of the Global Environment (HYDE) land use data in combination with climatic, landform and lithology covariates. Model results compared favorably with a global compilation of paired plot studies. Projection of this model onto a world without agriculture indicated a global carbon debt due to agriculture of 133 Pg C for the top 2 m of soil, with the rate of loss increasing dramatically in the past 200 years. The HYDE classes "grazing" and "cropland" contributed nearly equally to the loss of SOC. There were higher percent SOC losses on cropland but since more than twice as much land is grazed, slightly higher total losses were found from grazing land. Important spatial patterns of SOC loss were found: Hotspots of SOC loss coincided with some major cropping regions as well as semiarid grazing regions, while other major agricultural zones showed small losses and even net gains in SOC. This analysis has demonstrated that there are identifiable regions which can be targeted for SOC restoration efforts.


Subject(s)
Carbon Sequestration , Soil/chemistry , Agriculture/history , Databases, Factual , History, 15th Century , History, 16th Century , History, 17th Century , History, 18th Century , History, 19th Century , History, 20th Century , History, 21st Century , History, Ancient , History, Medieval , Humans , Machine Learning , Natural Resources
2.
Proc Natl Acad Sci U S A ; 102(38): 13521-5, 2005 Sep 20.
Article in English | MEDLINE | ID: mdl-16174745

ABSTRACT

We analyzed trends in a time series of photosynthetic activity across boreal North America over 22 years (1981 through 2003). Nearly 15% of the region displayed significant trends, of which just over half involved temperature-related increases in growing season length and photosynthetic intensity, mostly in tundra. In contrast, forest areas unaffected by fire during the study period declined in photosynthetic activity and showed no systematic change in growing season length. Stochastic changes across the time series were predominantly associated with a frequent and increasing fire disturbance regime. These trends have implications for the direction of feedbacks to the climate system and emphasize the importance of longer term synoptic observations of arctic and boreal biomes.


Subject(s)
Climate , Photosynthesis , Spacecraft , Trees , Arctic Regions , Environmental Monitoring , Fires , North America , Photosynthesis/physiology , Seasons , Time , Trees/physiology
SELECTION OF CITATIONS
SEARCH DETAIL