Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
Add more filters










Publication year range
1.
Plant Cell Environ ; 46(11): 3337-3352, 2023 11.
Article in English | MEDLINE | ID: mdl-37249162

ABSTRACT

Conservative flowering behaviours, such as flowering during long days in summer or late flowering at a high leaf number, are often proposed to protect against variable winter and spring temperatures which lead to frost damage if premature flowering occurs. Yet, due the many factors in natural environments relative to the number of individuals compared, assessing which climate characteristics drive these flowering traits has been difficult. We applied a multidisciplinary approach to 10 winter-annual Arabidopsis thaliana populations from a wide climactic gradient in Norway. We used a variable reduction strategy to assess which of 100 climate descriptors from their home sites correlated most to their flowering behaviours when tested for responsiveness to photoperiod after saturation of vernalization; then, assessed sequence variation of 19 known environmental-response flowering genes. Photoperiod responsiveness inversely correlated with interannual variation in timing of growing season onset. Time to flowering appeared driven by growing season length, curtailed by cold fall temperatures. The distribution of FLM, TFL2 and HOS1 haplotypes, genes involved in ambient temperature response, correlated with growing-season climate. We show that long-day responsiveness and late flowering may be driven not by risk of spring frosts, but by growing season temperature and length, perhaps to opportunistically maximize growth.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Humans , Arabidopsis/physiology , Temperature , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Seasons , Cold Temperature , Flowers/physiology , Photoperiod , Gene Expression Regulation, Plant , MADS Domain Proteins/genetics
2.
Mol Phylogenet Evol ; 179: 107678, 2023 02.
Article in English | MEDLINE | ID: mdl-36535518

ABSTRACT

Flowering in response to low temperatures (vernalization) has evolved multiple times independently across angiosperms as an adaptation to match reproductive development with the short growing season of temperate habitats. Despite the context of a generally conserved flowering time network, evidence suggests that the genes underlying vernalization responsiveness are distinct across major plant clades. Whether different or similar mechanisms underlie vernalization-induced flowering at narrower (e.g., family-level) phylogenetic scales is not well understood. To test the hypothesis that vernalization responsiveness has evolved convergently in temperate species of the grass family (Poaceae), we carried out flowering time experiments with and without vernalization in several representative species from different subfamilies. We then determined the likelihood that vernalization responsiveness evolved through parallel mechanisms by quantifying the response of Pooideae vernalization pathway FRUITFULL (FUL)-like genes to extended periods of cold. Our results demonstrate that vernalization-induced flowering has evolved multiple times independently in at least five grass subfamilies, and that different combinations of FUL-like genes have been recruited to this pathway on several occasions.


Subject(s)
Poaceae , Transcription Factors , Poaceae/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Flowers/genetics , Phylogeny , Plant Proteins/genetics , Plant Proteins/metabolism , Gene Expression Regulation, Plant , Cold Temperature
3.
Mol Ecol ; 32(4): 772-785, 2023 02.
Article in English | MEDLINE | ID: mdl-36420966

ABSTRACT

Temperate Pooideae are a large clade of economically important grasses distributed in some of the Earth's coldest and driest terrestrial environments. Previous studies have inferred that Pooideae diversified from their tropical ancestors in a cold montane habitat, suggesting that above-freezing cold (chilling) tolerance evolved early in the subfamily. By contrast, drought tolerance is hypothesized to have evolved multiple times independently in response to global aridification that occurred after the split of Pooideae tribes. To independently test predictions of the chilling-before-drought hypothesis in Pooideae, we assessed conservation of whole plant and gene expression traits in response to chilling vs. drought. We demonstrated that both trait responses are more similar across tribes in cold as compared to drought, suggesting that chilling responses evolved before, and drought responses after, tribe diversification. Moreover, we found significantly more overlap between drought and chilling responsive genes within a species than between drought responsive genes across species, providing evidence that chilling tolerance genes acted as precursors for the novel acquisition of increased drought tolerance multiple times independently, partially through the cooption of chilling responsive genes.


Subject(s)
Droughts , Poaceae , Poaceae/genetics , Phylogeny , Drought Resistance , Cold Temperature
4.
Ecol Evol ; 12(5): e8915, 2022 May.
Article in English | MEDLINE | ID: mdl-35592071

ABSTRACT

Polyploid species possess more than two sets of chromosomes and may show high gene redundancy, hybrid vigor, and masking of deleterious alleles compared to their parent species. Following this, it is hypothesized that this makes them better at adapting to novel environments than their parent species, possibly due to phenotypic plasticity. The allopolyploid Arabidopsis suecica and its parent species A. arenosa and A. thaliana were chosen as a model system to investigate relationships between phenotypic plasticity, fitness, and genetic variation. Particularly, we test if A. suecica is more plastic, show higher genetic diversity, and/or have higher fitness than its parent species. Wild Norwegian populations of each species were analyzed for phenotypic responses to differences in availability of nutrient, water, and light, while genetic diversity was assessed through analysis of AFLP markers. Arabidopsis arenosa showed a higher level of phenotypic plasticity and higher levels of genetic diversity than the two other species, probably related to its outbreeding reproduction strategy. Furthermore, a general positive relationship between genetic diversity and phenotypic plasticity was found. Low genetic diversity was found in the inbreeding A. thaliana. Geographic spacing of populations might explain the clear genetic structure in A. arenosa, while the lack of structure in A. suecica could be due to coherent populations. Fitness measured as allocation of resources to reproduction, pointed toward A. arenosa having lower fitness under poor environmental conditions. Arabidopsis suecica, on the other hand, showed tendencies toward keeping up fitness under different environmental conditions.

5.
J Exp Bot ; 73(12): 4079-4093, 2022 06 24.
Article in English | MEDLINE | ID: mdl-35394528

ABSTRACT

The external cues that trigger timely flowering vary greatly across tropical and temperate plant taxa, the latter relying on predictable seasonal fluctuations in temperature and photoperiod. In the grass family (Poaceae) for example, species of the subfamily Pooideae have become specialists of the northern temperate hemisphere, generating the hypothesis that their progenitor evolved a flowering response to long days from a short-day or day-neutral ancestor. Sampling across the Pooideae, we found support for this hypothesis, and identified several secondary shifts to day-neutral flowering and one to short-day flowering in a tropical highland clade. To explain the proximate mechanisms for the secondary transition back to short-day-regulated flowering, we investigated the expression of CCT domain genes, some of which are known to repress flowering in cereal grasses under specific photoperiods. We found a shift in CONSTANS 1 and CONSTANS 9 expression that coincides with the derived short-day photoperiodism of our exemplar species Nassella pubiflora. This sets up the testable hypothesis that trans- or cis-regulatory elements of these CCT domain genes were the targets of selection for major niche shifts in Pooideae grasses.


Subject(s)
Genes, Plant , Photoperiod , Flowers/physiology , Gene Expression Regulation, Plant , Plant Proteins/genetics , Plant Proteins/metabolism , Poaceae/physiology
6.
Plant Physiol ; 190(1): 5-18, 2022 08 29.
Article in English | MEDLINE | ID: mdl-35274728

ABSTRACT

Evidence suggests that anthropogenically-mediated global warming results in accelerated flowering for many plant populations. However, the fact that some plants are late flowering or unaffected by warming, underscores the complex relationship between phase change, temperature, and phylogeny. In this review, we present an emerging picture of how plants sense temperature changes, and then discuss the independent recruitment of ancient flowering pathway genes for the evolution of ambient, low, and high temperature-regulated reproductive development. As well as revealing areas of research required for a better understanding of how past thermal climates have shaped global patterns of plasticity in plant phase change, we consider the implications for these phenological thermal responses in light of climate change.


Subject(s)
Climate Change , Flowers , Flowers/physiology , Plants , Reproduction , Seasons , Temperature
7.
Front Plant Sci ; 13: 1048656, 2022.
Article in English | MEDLINE | ID: mdl-36684797

ABSTRACT

Despite most angiosperms being perennial, once-flowering annuals have evolved multiple times independently, making life history traits among the most labile trait syndromes in flowering plants. Much research has focused on discerning the adaptive forces driving the evolution of annual species, and in pinpointing traits that distinguish them from perennials. By contrast, little is known about how 'annual traits' evolve, and whether the same traits and genes have evolved in parallel to affect independent origins of the annual syndrome. Here, we review what is known about the distribution of annuals in both phylogenetic and environmental space and assess the evidence for parallel evolution of annuality through similar physiological, developmental, and/or genetic mechanisms. We then use temperate grasses as a case study for modeling the evolution of annuality and suggest future directions for understanding annual-perennial transitions in other groups of plants. Understanding how convergent life history traits evolve can help predict species responses to climate change and allows transfer of knowledge between model and agriculturally important species.

8.
Front Plant Sci ; 12: 747740, 2021.
Article in English | MEDLINE | ID: mdl-34790213

ABSTRACT

Temperate species often require or flower most rapidly in the long daylengths, or photoperiods, experienced in summer or after prolonged periods of cold temperatures, referred to as vernalization. Yet, even within species, plants vary in the degree of responsiveness to these cues. In Arabidopsis thaliana, CONSTANS (CO) and FLOWERING LOCUS C (FLC) genes are key to photoperiod and vernalization perception and antagonistically regulate FLOWERING LOCUS T (FT) to influence the flowering time of the plants. However, it is still an open question as to how these genes vary in their interactions among wild accessions with different flowering behaviors and adapted to different microclimates, yet this knowledge could improve our ability to predict plant responses in variable natural conditions. To assess the relationships among these genes and to flowering time, we exposed 10 winter-annual Arabidopsis accessions from throughout Norway, ranging from early to late flowering, along with two summer-annual accessions to 14 weeks of vernalization and either 8- or 19-h photoperiods to mimic Norwegian climate conditions, then assessed gene expression levels 3-, 5-, and 8-days post vernalization. CO and FLC explained both FT levels and flowering time (days) but not rosette leaf number at flowering. The correlation between FT and flowering time increased over time. Although vernalization suppresses FLC, FLC was high in the late-flowering accessions. Across accessions, FT was expressed only at low FLC levels and did not respond to CO in the late-flowering accessions. We proposed that FT may only be expressed below a threshold value of FLC and demonstrated that these three genes correlated to flowering times across genetically distinct accessions of Arabidopsis.

9.
Front Plant Sci ; 12: 639014, 2021.
Article in English | MEDLINE | ID: mdl-33859660

ABSTRACT

Safflower (Carthamus tinctorius) is a member of the Asteraceae family that is grown in temperate climates as an oil seed crop. Most commercially grown safflower varieties can be sown in late winter or early spring and flower rapidly in the absence of overwintering. There are winter-hardy safflower accessions that can be sown in autumn and survive over-wintering. Here, we show that a winter-hardy safflower possesses a vernalization response, whereby flowering is accelerated by exposing germinating seeds to prolonged cold. The impact of vernalization was quantitative, such that increasing the duration of cold treatment accelerated flowering to a greater extent, until the response was saturated after 2 weeks exposure to low-temperatures. To investigate the molecular-basis of the vernalization-response in safflower, transcriptome activity was compared and contrasted between vernalized versus non-vernalized plants, in both 'winter hardy' and 'spring' cultivars. These genome-wide expression analyses identified a small set of transcripts that are both differentially expressed following vernalization and that also have different expression levels in the spring versus winter safflowers. Four of these transcripts were quantitatively induced by vernalization in a winter hardy safflower but show high basal levels in spring safflower. Phylogenetic analyses confidently assigned that the nucleotide sequences of the four differentially expressed transcripts are related to FLOWERING LOCUS T (FT), FRUITFUL (FUL), and two genes within the MADS-like clade genes. Gene models were built for each of these sequences by assembling an improved safflower reference genome using PacBio-based long-read sequencing, covering 85% of the genome, with N50 at 594,000 bp in 3000 contigs. Possible evolutionary relationships between the vernalization response of safflower and those of other plants are discussed.

10.
Plant Physiol ; 183(3): 822-839, 2020 07.
Article in English | MEDLINE | ID: mdl-32404414

ABSTRACT

Since their origin in the early Cretaceous, grasses have diversified across every continent on Earth, with a handful of species (rice [Oryza sativa], maize [Zea mays], and wheat [Triticum aestivum]) providing most of the caloric intake of contemporary humans and their livestock. The ecological dominance of grasses can be attributed to a number of physiological innovations, many of which contributed to shifts from closed to open habitats that incur daily (e.g. tropical mountains) and/or seasonal extremes in temperature (e.g. temperate/continental regions) and precipitation (e.g. tropical savannas). In addition to strategies that allow them to tolerate or resist periodically stressful environments, plants can adopt escape behaviors by modifying the relative timing of distinct development phases. Flowering time is one of these behaviors that can also act as a postzygotic barrier to reproduction and allow temporal partitioning of resources to promote coexistence. In this review, we explore what is known about the phylogenetic pattern of flowering control in grasses, and how this relates to broad- and fine-scale niche transitions within the family. We then synthesize recent findings on the genetic basis of flowering time evolution as a way to begin deciphering why certain aspects of flowering are seemingly so conserved, and what the implications of this are for future adaptation under climate change.


Subject(s)
Adaptation, Physiological/genetics , Adaptation, Physiological/physiology , Flowers/genetics , Flowers/physiology , Poaceae/genetics , Poaceae/physiology , Reproduction/genetics , Reproduction/physiology , Climate , Gene Expression Regulation, Plant , Genes, Plant , Geography , Phylogeny
11.
Anal Bioanal Chem ; 412(24): 6459-6474, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32350580

ABSTRACT

Fourier-transform infrared (FTIR) spectroscopy enables the chemical characterization and identification of pollen samples, leading to a wide range of applications, such as paleoecology and allergology. This is of particular interest in the identification of grass (Poaceae) species since they have pollen grains of very similar morphology. Unfortunately, the correct identification of FTIR microspectroscopy spectra of single pollen grains is hindered by strong spectral contributions from Mie scattering. Embedding of pollen samples in paraffin helps to retrieve infrared spectra without scattering artifacts. In this study, pollen samples from 10 different populations of five grass species (Anthoxanthum odoratum, Bromus inermis, Hordeum bulbosum, Lolium perenne, and Poa alpina) were embedded in paraffin, and their single grain spectra were obtained by FTIR microspectroscopy. Spectra were subjected to different preprocessing in order to suppress paraffin influence on spectral classification. It is shown that decomposition by non-negative matrix factorization (NMF) and extended multiplicative signal correction (EMSC) that utilizes a paraffin constituent spectrum, respectively, leads to good success rates for the classification of spectra with respect to species by a partial least square discriminant analysis (PLS-DA) model in full cross-validation for several species. PLS-DA, artificial neural network, and random forest classifiers were applied on the EMSC-corrected spectra using an independent validation to assign spectra from unknown populations to the species. Variation within and between species, together with the differences in classification results, is in agreement with the systematics within the Poaceae family. The results illustrate the great potential of FTIR microspectroscopy for automated classification and identification of grass pollen, possibly together with other, complementary methods for single pollen chemical characterization.


Subject(s)
Poaceae/chemistry , Pollen/chemistry , Spectroscopy, Fourier Transform Infrared/methods , Discriminant Analysis , Least-Squares Analysis , Machine Learning
12.
New Phytol ; 228(1): 318-329, 2020 10.
Article in English | MEDLINE | ID: mdl-32421861

ABSTRACT

Semelparous annual plants flower a single time during their 1-yr life cycle, investing much of their energy into rapid reproduction. By contrast, iteroparous perennial plants flower multiple times over several years, and partition their resources between reproduction and persistence. To which extent evolutionary transitions between life-cycle strategies are internally constrained at the developmental, genetic and phylogenetic level is unknown. Here we study the evolution of life-cycle strategies in the grass subfamily Pooideae and test if transitions between them are facilitated by evolutionary precursors. We integrate ecological, life-cycle strategy and growth data in a phylogenetic framework. We investigate if growth traits are candidates for a precursor. Species in certain Pooideae clades are predisposed to evolve annuality from perenniality, potentially due to the shared inheritance of specific evolutionary precursors. Seasonal dry climates, which have been linked to annuality, were only able to select for transitions to annuality when the precursor was present. Allocation of more resources to above-ground rather than below-ground growth is a candidate for the precursor. Our findings support the hypothesis that only certain lineages can respond quickly to changing external conditions by switching their life-cycle strategy, likely due to the presence of evolutionary precursors.


Subject(s)
Flowers , Poaceae , Biological Evolution , Climate , Phylogeny , Poaceae/genetics , Resource Allocation
13.
J Bacteriol ; 201(21)2019 11 01.
Article in English | MEDLINE | ID: mdl-31427390

ABSTRACT

Germination of Bacillus spores is triggered by the binding of specific nutrients to germinant receptors (GRs) located in the spore's inner membrane. The GRs typically consist of A, B, and C subunits, encoded by tricistronic ger operons. The Bacillus licheniformis genome contains the gerA family operons gerA, ynd, and gerK In contrast to the ABC(D) organization that characterizes gerA operons of many Bacillus species, B. licheniformis genomes contain a pentacistronic ynd operon comprising the yndD, yndE3 , yndE2 , yndF1 , and yndE1 genes encoding A, B, B, C, and B GR subunits, respectively (subscripts indicate paralogs). Here we show that B. licheniformis spores can germinate in the absence of the Ynd and GerK GRs, although cooperation between all three GRs is required for optimal germination with amino acids. Spores carrying an incomplete set of Ynd B subunits demonstrated reduced germination efficiencies, while depletion of all three Ynd B subunits restored germination of the spore population to levels only slightly lower than those of wild-type spores at high germinant concentrations. This suggests that the presence of an incomplete set of Ynd B subunits exhibits a dominant negative effect on germination and that the A and C subunits of the Ynd GR are sufficient for the cooperative functionality between Ynd and GerA. In contrast to the B subunits of Ynd, the B subunit of GerA was essential for amino acid-induced germination. This study provides novel insights into the role of individual GR subunits in the cooperative interaction between GRs in triggering spore germination.IMPORTANCE Spore-forming bacteria are problematic for the food industry, as spores can survive decontamination procedures and subsequently revive in food products, with the risk of food spoilage and foodborne disease. The Ynd and GerA germination receptors (GRs) cooperate in triggering efficient germination of Bacillus licheniformis spores when nutrients are present in the surrounding environment. This study shows that the single B subunit of GerA is essential for the cooperative function between Ynd and GerA, while the three B subunits of the Ynd GR are dispensable. The ability of GRs lacking individual subunits to stimulate germination together with other GRs could explain why ger operons lacking GR subunit genes are maintained in genomes of spore-forming species.


Subject(s)
Bacillus subtilis/genetics , Bacterial Proteins/genetics , Spores, Bacterial/genetics , Amino Acids/genetics , Gene Expression Regulation, Bacterial/genetics , Membrane Proteins/genetics , Operon/genetics
14.
Plant Physiol ; 180(1): 404-419, 2019 05.
Article in English | MEDLINE | ID: mdl-30850470

ABSTRACT

The grass subfamily Pooideae dominates the grass floras in cold temperate regions and has evolved complex physiological adaptations to cope with extreme environmental conditions like frost, winter, and seasonality. One such adaptation is cold acclimation, wherein plants increase their frost tolerance in response to gradually falling temperatures and shorter days in the autumn. However, understanding how complex traits like cold acclimation evolve remains a major challenge in evolutionary biology. Here, we investigated the evolution of cold acclimation in Pooideae and found that a phylogenetically diverse set of Pooideae species displayed cold acclimation capacity. However, comparing differential gene expression after cold treatment in transcriptomes of five phylogenetically diverse species revealed widespread species-specific responses of genes with conserved sequences. Furthermore, we studied the correlation between gene family size and number of cold-responsive genes as well as between selection pressure on coding sequences of genes and their cold responsiveness. We saw evidence of protein-coding and regulatory sequence evolution as well as the origin of novel genes and functions contributing toward evolution of a cold response in Pooideae. Our results reflect that selection pressure resulting from global cooling must have acted on already diverged lineages. Nevertheless, conservation of cold-induced gene expression of certain genes indicates that the Pooideae ancestor may have possessed some molecular machinery to mitigate cold stress. Evolution of adaptations to seasonally cold climates is regarded as particularly difficult. How Pooideae evolved to transition from tropical to temperate biomes sheds light on how complex traits evolve in the light of climate changes.


Subject(s)
Cold-Shock Response/genetics , Plant Proteins/genetics , Poaceae/physiology , Acclimatization , Biological Evolution , Climate , Cold Temperature , Gene Expression Regulation, Plant , Multigene Family , Phylogeny , Selection, Genetic , Species Specificity , Transcriptome
15.
Front Plant Sci ; 10: 1788, 2019.
Article in English | MEDLINE | ID: mdl-32082348

ABSTRACT

The analysis of pollen chemical composition is important to many fields, including agriculture, plant physiology, ecology, allergology, and climate studies. Here, the potential of a combination of different spectroscopic and spectrometric methods regarding the characterization of small biochemical differences between pollen samples was evaluated using multivariate statistical approaches. Pollen samples, collected from three populations of the grass Poa alpina, were analyzed using Fourier-transform infrared (FTIR) spectroscopy, Raman spectroscopy, surface enhanced Raman scattering (SERS), and matrix assisted laser desorption/ionization mass spectrometry (MALDI-TOF MS). The variation in the sample set can be described in a hierarchical framework comprising three populations of the same grass species and four different growth conditions of the parent plants for each of the populations. Therefore, the data set can work here as a model system to evaluate the classification and characterization ability of the different spectroscopic and spectrometric methods. ANOVA Simultaneous Component Analysis (ASCA) was applied to achieve a separation of different sources of variance in the complex sample set. Since the chosen methods and sample preparations probe different parts and/or molecular constituents of the pollen grains, complementary information about the chemical composition of the pollen can be obtained. By using consensus principal component analysis (CPCA), data from the different methods are linked together. This enables an investigation of the underlying global information, since complementary chemical data are combined. The molecular information from four spectroscopies was combined with phenotypical information gathered from the parent plants, thereby helping to potentially link pollen chemistry to other biotic and abiotic parameters.

16.
Sci Rep ; 8(1): 16591, 2018 11 08.
Article in English | MEDLINE | ID: mdl-30409982

ABSTRACT

MALDI time-of-flight mass spectrometry (MALDI-TOF MS) has become a widely used tool for the classification of biological samples. The complex chemical composition of pollen grains leads to highly specific, fingerprint-like mass spectra, with respect to the pollen species. Beyond the species-specific composition, the variances in pollen chemistry can be hierarchically structured, including the level of different populations, of environmental conditions or different genotypes. We demonstrate here the sensitivity of MALDI-TOF MS regarding the adaption of the chemical composition of three Poaceae (grass) pollen for different populations of parent plants by analyzing the mass spectra with partial least squares discriminant analysis (PLS-DA) and principal component analysis (PCA). Thereby, variances in species, population and specific growth conditions of the plants were observed simultaneously. In particular, the chemical pattern revealed by the MALDI spectra enabled discrimination of the different populations of one species. Specifically, the role of environmental changes and their effect on the pollen chemistry of three different grass species is discussed. Analysis of the group formation within the respective populations showed a varying influence of plant genotype on the classification, depending on the species, and permits conclusions regarding the respective rigidity or plasticity towards environmental changes.


Subject(s)
Acclimatization , Poaceae/growth & development , Pollen/chemistry , Discriminant Analysis , Genotype , Least-Squares Analysis , Poaceae/chemistry , Poaceae/classification , Poaceae/genetics , Pollen/classification , Pollen/genetics , Pollen/growth & development , Principal Component Analysis , Species Specificity , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
18.
Mol Phylogenet Evol ; 114: 111-121, 2017 09.
Article in English | MEDLINE | ID: mdl-28603035

ABSTRACT

Flowering time is a carefully regulated trait controlled primarily through the action of the central genetic regulator, FLOWERING LOCUS T (FT). Recently it was demonstrated that a microRNA, miR5200, targets the end of the second exon of FT under short-day photoperiods in the grass subfamily Pooideae, thus preventing FT transcripts from reaching threshold levels under non-inductive conditions. Pooideae are an interesting group in that they rapidly diversified from the tropics into the northern temperate region during a major global cooling event spanning the Eocene-Oligocene transition. We hypothesize that miR5200 photoperiod-sensitive regulation of Pooideae flowering time networks assisted their transition into northern seasonal environments. Here, we test predictions derived from this hypothesis that miR5200, originally found in bread wheat and later identified in Brachypodium distachyon, (1) was present in the genome of the Pooideae common ancestor, (2) is transcriptionally regulated by photoperiod, and (3) is negatively correlated with FT transcript abundance, indicative of miR5200 regulating FT. Our results demonstrate that miR5200 did evolve at or around the base of Pooideae, but only acquired photoperiod-regulated transcription within the Brachypodium lineage. Based on expression profiles and previous data, we posit that the progenitor of miR5200 was co-regulated with FT by an unknown mechanism.


Subject(s)
Evolution, Molecular , MicroRNAs/genetics , Poaceae/genetics , Base Sequence , Brachypodium/classification , Brachypodium/genetics , Flowers/genetics , Gene Expression Regulation, Plant , Genes, Plant , MicroRNAs/classification , Photoperiod , Phylogeny , Poaceae/classification , Regulon/genetics , Sequence Alignment , Transcriptome
19.
Front Plant Sci ; 8: 1046, 2017.
Article in English | MEDLINE | ID: mdl-28659966

ABSTRACT

Adaptation of plants to local conditions that vary substantially within their geographic range is essential for seasonal timing of flowering, a major determinant of plant reproductive success. This study investigates photoperiodic responses in natural populations of Arabidopsis thaliana from high northern latitudes and their significance for local adaptation. Thirty lineages from ten local A. thaliana populations, representing different locations across an altitudinal gradient (2-850 m a.s.l.) in Norway, were grown under uniform controlled conditions, and used to screen for responses to five different photoperiods. We studied relationships between variation in photoperiodic sensitivity of flowering time, altitude, and climatic factors associated with the sites of origin. We found that variation in response to photoperiod is significantly correlated with altitude and climatic variables associated with the sites of origin of the populations. Populations originating from lower altitudes showed stronger photoperiodic sensitivity than populations from higher altitudes. Our results indicate that the altitudinal climatic gradient generates clinal variation in adaptive traits in A. thaliana.

20.
Ecol Evol ; 7(24): 10839-10849, 2017 12.
Article in English | MEDLINE | ID: mdl-29299262

ABSTRACT

The two factors defining male reproductive success in plants are pollen quantity and quality, but our knowledge about the importance of pollen quality is limited due to methodological constraints. Pollen quality in terms of chemical composition may be either genetically fixed for high performance independent of environmental conditions, or it may be plastic to maximize reproductive output under different environmental conditions. In this study, we validated a new approach for studying the role of chemical composition of pollen in adaptation to local climate. The approach is based on high-throughput Fourier infrared (FTIR) characterization and biochemical interpretation of pollen chemical composition in response to environmental conditions. The study covered three grass species, Poa alpina, Anthoxanthum odoratum, and Festuca ovina. For each species, plants were grown from seeds of three populations with wide geographic and climate variation. Each individual plant was divided into four genetically identical clones which were grown in different controlled environments (high and low levels of temperature and nutrients). In total, 389 samples were measured using a high-throughput FTIR spectrometer. The biochemical fingerprints of pollen were species and population specific, and plastic in response to different environmental conditions. The response was most pronounced for temperature, influencing the levels of proteins, lipids, and carbohydrates in pollen of all species. Furthermore, there is considerable variation in plasticity of the chemical composition of pollen among species and populations. The use of high-throughput FTIR spectroscopy provides fast, cheap, and simple assessment of the chemical composition of pollen. In combination with controlled-condition growth experiments and multivariate analyses, FTIR spectroscopy opens up for studies of the adaptive role of pollen that until now has been difficult with available methodology. The approach can easily be extended to other species and environmental conditions and has the potential to significantly increase our understanding of plant male function.

SELECTION OF CITATIONS
SEARCH DETAIL
...