Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 90
Filter
1.
Res Q Exerc Sport ; : 1-9, 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39173035

ABSTRACT

Background: The success of competitive alpine skiers with respective to their world ranking (WR) positions might be associated with prominent gene polymorphisms. Methods: Twenty-six competitive alpine skiers were followed from 2015 to 2019 for their WR positions (FIS-ranking). Using PCR, the genotypes of ACE-I/D, TNC, ACTN3, and PTK2 were identified. The correlations between the discipline-specific WR position (slalom-SL, giant slalom-GS, super G-SG, downhill-DH, and alpine combined-AC) and gene polymorphisms were analyzed concerning an influence with multivariate regression models. Results: The WR position and the ACE gene as well as the copy number of the ACE I-allele exhibited reciprocal relationships for speed specialists (SG and DH) but not for technical specialists (SL and GS). Similarly, the gene polymorphisms ACTN3 and (partly) PTK2 were associated with the WR position in disciplines characterized by a high number of turns (technical specialists-SL and GS) and speed (speed-specialists-SG and DH), respectively. Conclusions: Our findings emphasize the contributions of aerobic and cardiovascular metabolism in fueling muscle work and recovering from muscle fatigue for competitive success in slalom-driven skiing disciplines and highlight the contributions of sequence variants in the genes ACE, TNC, and ACTN3.

2.
Genes (Basel) ; 15(7)2024 Jul 14.
Article in English | MEDLINE | ID: mdl-39062697

ABSTRACT

BACKGROUND: Polymorphism rs1049434 characterizes the nonsynonymous exchange of adenosine (A) by thymidine (T) in the gene for monocarboxylate transporter 1 (MCT1). We tested whether T-allele carriers of rs1049434 demonstrate increased accumulation of markers of metabolic strain. METHODS: Physically active, healthy, young male subjects (n = 22) conducted a power-matched one-legged cycling exercise to exhaustion. Metabolic substrates in capillary blood, selected metabolic compounds, and indices for the slow oxidative phenotype of vastus lateralis muscle were quantified in samples collected before and after exercise. The genotypes of the rs1049434 polymorphism were determined with polymerase chain reactions. RESULTS: One-legged exercise affected the concentration of muscle metabolites entering the tricarboxylic acid cycle, such as acetyl-co-enzyme A (+448%) and acetyl-L-carnitine (+548%), muscle glycogen (-59%), and adenosine monophosphate (-39%), 30 min post-exercise. Exercise-related variability in the muscular concentration of glycogen, long-chain acyl co-enzyme As and a triglyceride, nicotinamide adenine dinucleotide (NADH), and adenosine monophosphate (AMP) interacted with rs1049434. T-allele carriers demonstrated a 39% lesser reduction in glycogen after exercise than non-carriers when NADH increased only in the non-carriers. Muscle lactate concentration was 150% higher, blood triacyl-glyceride concentration was 53% lower, and slow fiber percentage was 20% lower in T-allele carriers. DISCUSSION: The observations suggest a higher anaerobic glycolytic strain during exhaustive exercise and a lowered lipid handling in T-allele non-carriers.


Subject(s)
Alleles , Exercise , Monocarboxylic Acid Transporters , Polymorphism, Single Nucleotide , Symporters , Humans , Male , Monocarboxylic Acid Transporters/genetics , Monocarboxylic Acid Transporters/metabolism , Adult , Symporters/genetics , Symporters/metabolism , Young Adult , Muscle, Skeletal/metabolism , Glycogen/metabolism , Genotype
3.
Metabolites ; 14(4)2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38668315

ABSTRACT

Structural muscle changes, including muscle atrophy and fatty infiltration, follow rotator cuff tendon tear and are associated with a high repair failure rate. Despite extensive research efforts, no pharmacological therapy is available to successfully prevent both muscle atrophy and fatty infiltration after tenotomy of tendomuscular unit without surgical repair. Poly(ADP-ribose) polymerases (PARPs) are identified as a key transcription factors involved in the maintenance of cellular homeostasis. PARP inhibitors have been shown to influence muscle degeneration, including mitochondrial hemostasis, oxidative stress, inflammation and metabolic activity, and reduced degenerative changes in a knockout mouse model. Tenotomized infraspinatus were assessed for muscle degeneration for 16 weeks using a Swiss Alpine sheep model (n = 6). All sheep received daily oral administration of 0.5 mg Talazoparib. Due to animal ethics, the treatment group was compared with three different controls from prior studies of our institution. To mitigate potential batch heterogeneity, PARP-I was evaluated in comparison with three distinct control groups (n = 6 per control group) using the same protocol without treatment. The control sheep were treated with an identical study protocol without Talazoparib treatment. Muscle atrophy and fatty infiltration were evaluated at 0, 6 and 16 weeks post-tenotomy using DIXON-MRI. The controls and PARP-I showed a significant (control p < 0.001, PARP-I p = 0.01) decrease in muscle volume after 6 weeks. However, significantly less (p = 0.01) atrophy was observed in PARP-I after 6 weeks (control 1: 76.6 ± 8.7%; control 2: 80.3 ± 9.3%, control 3: 73.8 ± 6.7% vs. PARP-I: 90.8 ± 5.1% of the original volume) and 16 weeks (control 1: 75.7 ± 9.9; control 2: 74.2 ± 5.6%; control 3: 75.3 ± 7.4% vs. PARP-I 93.3 ± 10.6% of the original volume). All experimental groups exhibited a statistically significant (p < 0.001) augmentation in fatty infiltration following a 16-week period when compared to the initial timepoint. However, the PARP-I showed significantly less fatty infiltration (p < 0.003) compared to all controls (control 1: 55.6 ± 6.7%, control 2: 53.4 ± 9.4%, control 3: 52.0 ± 12.8% vs. PARP-I: 33.5 ± 8.4%). Finally, a significantly (p < 0.04) higher proportion and size of fast myosin heavy chain-II fiber type was observed in the treatment group. This study shows that PARP-inhibition with Talazoparib inhibits the progression of both muscle atrophy and fatty infiltration over 16 weeks in retracted sheep musculotendinous units.

4.
Biochim Biophys Acta Mol Cell Res ; 1871(2): 119610, 2024 02.
Article in English | MEDLINE | ID: mdl-37913845

ABSTRACT

BACKGROUND: We tested whether enhancing the capacity for calcium/calmodulin-dependent protein kinase type II (CaMKII) signaling would delay fatigue of excitation-induced calcium release and improve contractile characteristics of skeletal muscle during fatiguing exercise. METHODS: Fast and slow type muscle, gastrocnemius medialis (GM) and soleus (SOL), of rats and mouse interosseus (IO) muscle fibers, were transfected with pcDNA3-based plasmids for rat α and ß CaMKII or empty controls. Levels of CaMKII, its T287-phosphorylation (pT287-CaMKII), and phosphorylation of components of calcium release and re-uptake, ryanodine receptor 1 (pS2843-RyR1) and phospholamban (pT17-PLN), were quantified biochemically. Sarcoplasmic calcium in transfected muscle fibers was monitored microscopically during trains of electrical excitation based on Fluo-4 FF fluorescence (n = 5-7). Effects of low- (n = 6) and high- (n = 8) intensity exercise on pT287-CaMKII and contractile characteristics were studied in situ. RESULTS: Co-transfection with αCaMKII-pcDNA3/ßCaMKII-pcDNA3 increased α and ßCaMKII levels in SOL (+45.8 %, +250.5 %) and GM (+40.4 %, +89.9 %) muscle fibers compared to control transfection. High-intensity exercise increased pT287-ßCaMKII and pS2843-RyR1 levels in SOL (+269 %, +151 %) and GM (+354 %, +119 %), but decreased pT287-αCaMKII and p17-PLN levels in GM compared to SOL (-76 % vs. +166 %; 0 % vs. +128 %). α/ß CaMKII overexpression attenuated the decline of calcium release in muscle fibers with repeated excitation, and mitigated exercise-induced deterioration of rates in force production, and passive force, in a muscle-dependent manner, in correlation with pS2843-RyR1 and pT17-PLN levels (|r| > 0.7). CONCLUSION: Enhanced capacity for α/ß CaMKII signaling improves fatigue-resistance of active and passive contractile muscle properties in association with RyR1- and PLN-related improvements in sarcoplasmic calcium release.


Subject(s)
Calcium , Ryanodine Receptor Calcium Release Channel , Rats , Mice , Animals , Ryanodine Receptor Calcium Release Channel/genetics , Ryanodine Receptor Calcium Release Channel/metabolism , Calcium/metabolism , Calcium-Calmodulin-Dependent Protein Kinase Type 2/genetics , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Calcium Signaling , Muscle Contraction
5.
Orthop J Sports Med ; 11(9): 23259671231196875, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37736603

ABSTRACT

Background: Healing of the rotator cuff after repair constitutes a major clinical challenge with reported high failure rates. Identifying structural musculotendinous predictors for failed rotator cuff repair could enable improved diagnosis and management of patients with rotator cuff disease. Purpose: To investigate structural predictors of the musculotendinous unit for failed tendon healing after rotator cuff repair. Study Design: Cohort study; Level of evidence, 2. Methods: Included were 116 shoulders of 115 consecutive patients with supraspinatus (SSP) tear documented on magnetic resonance imaging (MRI) who were treated with an arthroscopic rotator cuff repair. Preoperative assessment included standardized clinical and imaging (MRI) examinations. Intraoperatively, biopsies of the joint capsule, the SSP tendon, and muscle were harvested for histological assessment. At 3 and 12 months postoperatively, patients were re-examined clinically and with MRI. Structural and clinical predictors of healing were evaluated using logistic and linear regression models. Results: Structural failure of tendon repair, which was significantly associated with poorer clinical outcome, was associated with older age (ß = 1.12; 95% CI, 1.03 to 1.26; P = .03), shorter SSP tendon length (ß = 0.89; 95% CI, 0.8 to 0.98; P = .02), and increased proportion of slow myosin heavy chain (MHC)-I/fast MHC-II hybrid muscle fibers (ß = 1.23; 95% CI, 1.07 to 1.42; P = .004). Primary clinical outcome (12-month postoperative Constant score) was significantly less favorable for shoulders with fatty infiltration of the infraspinatus muscle (ß = -4.71; 95% CI, -9.30 to -0.12; P = .044). Conversely, a high content of fast MHC-II muscle fibers (ß = 0.24; 95% CI, 0.026 to 0.44; P = .028) was associated with better clinical outcome. Conclusion: Both decreased tendon length and increased hybrid muscle fiber type were independent predictors for retear. Clinical outcome was compromised by tendon retearing and increased fatty infiltration of the infraspinatus muscle. A high content of fast MHC-II SSP muscle fibers was associated with a better clinical outcome. Registration: NCT02123784 (ClinicalTrials.govidentifier).

6.
Genes (Basel) ; 14(6)2023 05 26.
Article in English | MEDLINE | ID: mdl-37372345

ABSTRACT

Background: The training of elite skiers follows a systematic seasonal periodization with a preparation period, when anaerobic muscle strength, aerobic capacity, and cardio-metabolic recovery are specifically conditioned to provide extra capacity for developing ski-specific physical fitness in the subsequent competition period. We hypothesized that periodization-induced alterations in muscle and metabolic performance demonstrate important variability, which in part is explained by gene-associated factors in association with sex and age. Methods: A total of 34 elite skiers (20.4 ± 3.1 years, 19 women, 15 men) underwent exhaustive cardiopulmonary exercise and isokinetic strength testing before and after the preparation and subsequent competition periods of the World Cup skiing seasons 2015-2018. Biometric data were recorded, and frequent polymorphisms in five fitness genes, ACE-I/D (rs1799752), TNC (rs2104772), ACTN3 (rs1815739), and PTK2 (rs7460, rs7843014), were determined with specific PCR reactions on collected DNA. Relative percentage changes of cardio-pulmonary and skeletal muscle metabolism and performance over the two seasonal periods were calculated for 160 data points and subjected to analysis of variance (ANOVA) to identify hypothesized and novel associations between performance alterations and the five respective genotypes and determine the influence of age × sex. A threshold of 0.1 for the effect size (h2) was deemed appropriate to identify relevant associations and motivate a post hoc test to localize effects. Results: The preparation and competition periods produced antidromic functional changes, the extent of which varied with increasing importance for anaerobic strength, aerobic performance, cardio-metabolic efficiency, and cardio-metabolic/muscle recovery. Only peak RER (-14%), but not anaerobic strength and peak aerobic performance, and parameters characterizing cardio-metabolic efficiency, differed between the first and last studied skiing seasons because improvements over the preparation period were mostly lost over the competition period. A number of functional parameters demonstrated associations of variability in periodic changes with a given genotype, and this was considerably influenced by athlete "age", but not "sex". This concerned age-dependent associations between periodic changes in muscle-related parameters, such as anaerobic strength for low and high angular velocities of extension and flexion and blood lactate concentration, with rs1799752 and rs2104772, whose gene products relate to sarcopenia. By contrast, the variance in period-dependent changes in body mass and peak VO2 with rs1799752 and rs2104772, respectively, was independent of age. Likely, the variance in periodic changes in the reliance of aerobic performance on lactate, oxygen uptake, and heart rate was associated with rs1815739 independent of age. These associations manifested at the post hoc level in genotype-associated differences in critical performance parameters. ACTN3 T-allele carriers demonstrated, compared to non-carriers, largely different periodic changes in the muscle-associated parameters of aerobic metabolism during exhaustive exercise, including blood lactate and respiration exchange ratio. The homozygous T-allele carriers of rs2104772 demonstrated the largest changes in extension strength at low angular velocity during the preparation period. Conclusions: Physiological characteristics of performance in skiing athletes undergo training period-dependent seasonal alterations the extent of which is largest for muscle metabolism-related parameters. Genotype associations for the variability in changes of aerobic metabolism-associated power output during exhaustive exercise and anaerobic peak power over the preparation and competition period motivate personalized training regimes. This may help to predict and maximize the benefit of physical conditioning of elite skiers based on chronological characteristics and the polymorphisms of the ACTN3, ACE, and TNC genes investigated here.


Subject(s)
Muscle Strength , Oxygen Consumption , Male , Humans , Female , Seasons , Oxygen Consumption/genetics , Muscle Strength/genetics , Muscle, Skeletal/physiology , Lactic Acid , Actinin
7.
Int J Mol Sci ; 24(11)2023 May 26.
Article in English | MEDLINE | ID: mdl-37298293

ABSTRACT

We studied the relationship between neuronal NO synthase (nNOS) expression and capillarity in the tibialis anterior (TA) muscle of mice subjected to treadmill training. The mRNA (+131%) and protein (+63%) levels of nNOS were higher (p ≤ 0.05) in the TA muscle of C57BL/6 mice undergoing treadmill training for 28 days than in those of littermates remaining sedentary, indicating an up-regulation of nNOS by endurance exercise. Both TA muscles of 16 C57BL/6 mice were subjected to gene electroporation with either the pIRES2-ZsGreen1 plasmid (control plasmid) or the pIRES2-ZsGreen1-nNOS gene-inserted plasmid (nNOS plasmid). Subsequently, one group of mice (n = 8) underwent treadmill training for seven days, while the second group of mice (n = 8) remained sedentary. At study end, 12-18% of TA muscle fibers expressed the fluorescent reporter gene ZsGreen1. Immunofluorescence for nNOS was 23% higher (p ≤ 0.05) in ZsGreen1-positive fibers than ZsGreen1-negative fibers from the nNOS-transfected TA muscle of mice subjected to treadmill training. Capillary contacts around myosin heavy-chain (MHC)-IIb immunoreactive fibers (14.2%; p ≤ 0.05) were only higher in ZsGreen1-positive fibers than ZsGreen1-negative fibers in the nNOS-plasmid-transfected TA muscles of trained mice. Our observations are in line with an angiogenic effect of quantitative increases in nNOS expression, specifically in type-IIb muscle fibers after treadmill training.


Subject(s)
Muscle, Skeletal , Physical Conditioning, Animal , Animals , Mice , Cardiovascular Physiological Phenomena , Mice, Inbred C57BL , Muscle Fibers, Skeletal/metabolism , Muscle, Skeletal/metabolism , Physical Conditioning, Animal/physiology , Up-Regulation
8.
Genes (Basel) ; 14(5)2023 05 17.
Article in English | MEDLINE | ID: mdl-37239460

ABSTRACT

Background: The prominent insertion/deletion polymorphism in the gene for the major modulator of tissue perfusion, angiotensin-converting enzyme (ACE-I/D) is associated with variability in adjustments in cardiac and skeletal muscle performance with standard forms of endurance and strength type training. Here, we tested whether the ACE-I/D genotype would be associated with variability in the effects of interval-type training on peak and aerobic performance of peripheral muscle and cardio-vasculature and post-exercise recovery. Methods: Nine healthy subjects (39.0 ± 14.7 years of age; 64.6 ± 16.1 kg, 173.6 ± 9.9) completed eight weeks of interval training on a soft robotic device based on repeated sets of a pedaling exercise at a matched intensity relative to their peak aerobic power output. Prior to and post-training, peak anaerobic and aerobic power output was assessed, mechanical work and metabolic stress (oxygen saturation and hemoglobin concentrations of Musculus vastus lateralis (VAS) and Musculus gastrocnemius (GAS), blood lactate and factors setting cardiac output such as heart rate, systolic and diastolic blood pressure were monitored during ramp-incremental exercise and interval exercise with the calculation of areas under the curve (AUC), which were put in relation to the produced muscle work. Genotyping was performed based on I- and D-allele-specific polymerase chain reactions on genomic DNA from mucosal swaps. The significance of interaction effects between training and ACE I-allele on absolute and work-related values was assessed with repeated measures ANOVA. Results: Subjects delivered 87% more muscle work/power, 106% more cardiac output, and muscles experienced ~72% more of a deficit in oxygen saturation and a ~35% higher passage of total hemoglobin during single interval exercise after the eight weeks of training. Interval training affected aspects of skeletal muscle metabolism and performance, whose variability was associated with the ACE I-allele. This concerned the economically favorable alterations in the work-related AUC for the deficit of SmO2 in the VAS and GAS muscles during the ramp exercise for the I-allele carriers and opposing deteriorations in non-carriers. Conversely, oxygen saturation in the VAS and GAS at rest and during interval exercise was selectively improved after training for the non-carriers of the I-allele when the AUC of tHb per work during interval exercise deteriorated in the carriers. Training also improved aerobic peak power output by 4% in the carriers but not the non-carriers (p = 0.772) of the ACE I-allele while reducing negative peak power (-27.0%) to a lesser extent in the ACE I-allele carriers than the non-carriers. Variability in cardiac parameters (i.e., the AUC of heart rate and glucose during ramp exercise, was similar to the time to recovery of maximal tHb in both muscles after cessation of ramp exercise, only associated with the ACE I-allele but not training per se. Diastolic blood pressure and cardiac output during recovery from exhaustive ramp exercise demonstrated a trend for training-associated differences in association with the ACE I-allele. Discussion: The exercise-type dependent manifestation of antidromic adjustments in leg muscle perfusion and associated local aerobic metabolism between carriers and non-carriers of the ACE I-allele with the interval-training highlight that non-carriers of the I-allele do not present an essential handicap to improve perfusion-related aerobic muscle metabolism but that the manifestation of responsiveness depends on the produced work. Conclusions: The deployed interval-type of exercise produced ACE I-allele-related differences in the alterations of negative anaerobic performance and perfusion-related aerobic muscle metabolism, which manifestation is exercise specific. The training-invariant ACE I-allele-associated differences in heart rate and blood glucose concentration emphasize that the repeated impact of the interval stimulus, despite a near doubling of the initial metabolic load, was insufficient to overturn ACE-related genetic influences on cardiovascular function.


Subject(s)
Exercise , Muscle, Skeletal , Humans , Alleles , Exercise/physiology , Hemoglobins/metabolism , Muscle, Skeletal/metabolism , Polymorphism, Genetic
9.
Genes (Basel) ; 13(10)2022 10 05.
Article in English | MEDLINE | ID: mdl-36292682

ABSTRACT

BACKGROUND: Skiing is a popular outdoor sport posing different requirements on musculoskeletal and cardiorespiratory function to excel in competition. The extent to which genotypic features contribute to the development of performance with years of ski-specific training remains to be elucidated. We therefore tested whether prominent polymorphisms in genes for angiotensin converting enzyme (ACE-I/D, rs1799752), tenascin-C (TNC, rs2104772), actinin-3 (ACTN3, rs1815739) and PTK2 (rs7460 and rs7843014) are associated with the differentiation of cellular hallmarks of muscle metabolism and contraction in high level skiers. MATERIAL & METHODS: Forty-three skiers of a world-leading national ski team performed exhaustive cardiopulmonary exercise testing as well as isokinetic strength testing for single contractions, whereby 230 cardiopulmonary measurements were performed in the period from 2015-2018. A total of 168 and 62 data measurements were from the Alpine and Nordic skiing squads, respectively. Ninety-five and one hundred thirty-five measurements, respectively, were from male and female athletes. The average (±SD) age was 21.5 ± 3.0 years, height 174.0 ± 8.7 cm, and weight 71.0 ± 10.9 kg for the analysed skiers. Furthermore, all skiers were analysed concerning their genotype ACE-I/D, Tenascin C, ACTN3, PTK2. RESULTS: The genotype distribution deviated from Hardy-Weinberg equilibrium for the ACTN3 genotype, where rs1815739-TT genotypes (corresponding to the nonsense mutation) were overrepresented in world-class skiers, indicating a slow muscle fibre phenotype. Furthermore, the heterozygous rs2104772-AT genotypes of TNC also demonstrated the best scaled peak power output values during ramp exercise to exhaustion. The highest values under maximum performance for heart rate were associated with the rs1799752-II and rs1815739-CC genotypes. The lowest values for peak power of single contractions were achieved for rs1815739-CC, rs1799752-II and rs7843014-CT genotypes. The skiing discipline demonstrated a main influence on cardiorespiratory parameters but did not further interact with genotype-associated variability in performance. DISCUSSION: Classically, it is pointed out that muscles of, for example, alpine skiers do not possess a distinct fibre type composition, but that skiers tend to have a preponderance of slow-twitch fibres. Consequently, our findings of an overrepresentation of ACTN3-TT genotypes in a highly selective sample of elite world class skiers support the potential superiority of a slow fibre type distribution. CONCLUSIONS: We suggest that one competitive advantage that results from a slow, typically fatigue-resistant fibre type distribution might be that performance during intense training days is better preserved, whereby simply a higher technical training volume can be performed, yielding to a competitive advantage.


Subject(s)
Skiing , Male , Female , Humans , Skiing/physiology , Actinin/genetics , Peptidyl-Dipeptidase A/genetics , Tenascin/genetics , Codon, Nonsense , Athletes , Muscle Fibers, Skeletal/physiology
10.
Front Physiol ; 13: 933792, 2022.
Article in English | MEDLINE | ID: mdl-36148310

ABSTRACT

Homozygous carriers of the deletion allele in the gene for angiotensin-converting enzyme (ACE-DD) demonstrate an elevated risk to develop inactivity-related type II diabetes and show an overshoot of blood glucose concentration with enduring exercise compared to insertion allele carriers. We hypothesized that ACE-DD genotypes exhibit a perturbed activity of signaling processes governing capillary-dependent glucose uptake in vastus lateralis muscle during exhaustive cycling exercise, which is associated with the aerobic fitness state. 27 healthy, male white Caucasian subjects (26.8 ± 1.1 years; BMI 23.6 +/- 0.6 kg m-2) were characterized for their aerobic fitness based on a threshold of 50 ml O2 min-1 kg-1 and the ACE-I/D genotype. Subjects completed a session of exhaustive one-legged exercise in the fasted state under concomitant measurement of cardiorespiratory function. Capillary blood and biopsies were collected before, and ½ and 8 h after exercise to quantify glucose and lipid metabolism-related compounds (lipoproteins, total cholesterol, ketones) in blood, the phosphorylation of 45 signaling proteins, muscle glycogen and capillaries. Effects of aerobic fitness, ACE-I/D genotype, and exercise were assessed with analysis of variance (ANOVA) under the hypothesis of a dominant effect of the insertion allele. Exertion with one-legged exercise manifested in a reduction of glycogen concentration ½ h after exercise (-0.046 mg glycogen mg-1 protein). Blood glucose concentration rose immediately after exercise in association with the ACE-I/D genotype (ACE-DD: +26%, ACE-ID/II: +6%) and independent of the fitness state (p = 0.452). Variability in total cholesterol was associated with exercise and fitness. In fit subjects, the phosphorylation levels of glucose uptake-regulating kinases [AKT-pT308 (+156%), SRC-pY419, p38α-pT180/T182, HCK-pY411], as well as cytokine/angiotensin 1-7 signaling factors [(STAT5A-pY694, STAT5B-pY699, FYN-pY420, EGFR-pY1086] were higher in angiotensin converting enzyme I-allele carriers than ACE-DD genotypes after exercise. Conversely, the AKT-S473 phosphorylation level (+117%) and angiotensin 2's blood concentration (+191%) were higher in ACE-DD genotypes. AKT-S473 phosphorylation levels post-exercise correlated to anatomical parameters of muscle performance and metabolic parameters (p < 0.05 and │r│>0.70). The observations identify reciprocal alterations of S473 and T308 phosphorylation of AKT as gatekeeper of a post-translational dysregulation of transcapillary glucose uptake in ACE-DD genotypes which may be targeted in personalized approaches to mitigate type II diabetes.

SELECTION OF CITATIONS
SEARCH DETAIL