Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 65
Filter
Add more filters











Publication year range
1.
Nat Commun ; 15(1): 6971, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39138218

ABSTRACT

Ligation of the B cell antigen receptor (BCR) initiates humoral immunity. However, BCR signaling without appropriate co-stimulation commits B cells to death rather than to differentiation into immune effector cells. How BCR activation depletes potentially autoreactive B cells while simultaneously primes for receiving rescue and differentiation signals from cognate T lymphocytes remains unknown. Here, we use a mass spectrometry-based proteomic approach to identify cytosolic/nuclear shuttling elements and uncover transcription factor EB (TFEB) as a central BCR-controlled rheostat that drives activation-induced apoptosis, and concurrently promotes the reception of co-stimulatory rescue signals by supporting B cell migration and antigen presentation. CD40 co-stimulation prevents TFEB-driven cell death, while enhancing and prolonging TFEB's nuclear residency, which hallmarks antigenic experience also of memory B cells. In mice, TFEB shapes the transcriptional landscape of germinal center B cells. Within the germinal center, TFEB facilitates the dark zone entry of light-zone-residing centrocytes through regulation of chemokine receptors and, by balancing the expression of Bcl-2/BH3-only family members, integrates antigen-induced apoptosis with T cell-provided CD40 survival signals. Thus, TFEB reprograms antigen-primed germinal center B cells for cell fate decisions.


Subject(s)
Apoptosis , B-Lymphocytes , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors , CD40 Antigens , Germinal Center , Receptors, Antigen, B-Cell , Animals , Germinal Center/immunology , Germinal Center/cytology , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Mice , CD40 Antigens/metabolism , CD40 Antigens/immunology , Receptors, Antigen, B-Cell/metabolism , Receptors, Antigen, B-Cell/immunology , Mice, Inbred C57BL , Lymphocyte Activation/immunology , Cell Differentiation/immunology , Signal Transduction , Antigen Presentation/immunology
3.
EMBO J ; 43(8): 1420-1444, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38528182

ABSTRACT

Current approaches to the treatment of schizophrenia have mainly focused on the protein-coding part of the genome; in this context, the roles of microRNAs have received less attention. In the present study, we analyze the microRNAome in the blood and postmortem brains of schizophrenia patients, showing that the expression of miR-99b-5p is downregulated in both the prefrontal cortex and blood of patients. Lowering the amount of miR-99b-5p in mice leads to both schizophrenia-like phenotypes and inflammatory processes that are linked to synaptic pruning in microglia. The microglial miR-99b-5p-supressed inflammatory response requires Z-DNA binding protein 1 (Zbp1), which we identify as a novel miR-99b-5p target. Antisense oligonucleotides against Zbp1 ameliorate the pathological effects of miR-99b-5p inhibition. Our findings indicate that a novel miR-99b-5p-Zbp1 pathway in microglia might contribute to the pathogenesis of schizophrenia.


Subject(s)
MicroRNAs , Schizophrenia , Animals , Humans , Mice , Microglia/metabolism , MicroRNAs/metabolism , RNA-Binding Proteins/metabolism , Schizophrenia/genetics
4.
Nat Neurosci ; 26(7): 1218-1228, 2023 07.
Article in English | MEDLINE | ID: mdl-37386131

ABSTRACT

Axonal degeneration determines the clinical outcome of multiple sclerosis and is thought to result from exposure of denuded axons to immune-mediated damage. Therefore, myelin is widely considered to be a protective structure for axons in multiple sclerosis. Myelinated axons also depend on oligodendrocytes, which provide metabolic and structural support to the axonal compartment. Given that axonal pathology in multiple sclerosis is already visible at early disease stages, before overt demyelination, we reasoned that autoimmune inflammation may disrupt oligodendroglial support mechanisms and hence primarily affect axons insulated by myelin. Here, we studied axonal pathology as a function of myelination in human multiple sclerosis and mouse models of autoimmune encephalomyelitis with genetically altered myelination. We demonstrate that myelin ensheathment itself becomes detrimental for axonal survival and increases the risk of axons degenerating in an autoimmune environment. This challenges the view of myelin as a solely protective structure and suggests that axonal dependence on oligodendroglial support can become fatal when myelin is under inflammatory attack.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental , Multiple Sclerosis , Mice , Animals , Humans , Myelin Sheath/metabolism , Axons/metabolism , Multiple Sclerosis/pathology , Encephalomyelitis, Autoimmune, Experimental/pathology , Risk Factors
5.
Front Immunol ; 14: 1194842, 2023.
Article in English | MEDLINE | ID: mdl-37292191

ABSTRACT

Theiler's murine encephalomyelitis virus (TMEV) is the causative agent of TMEV-induced demyelinating disease (TMEV-IDD); a well-established animal model for the chronic progressive form of human multiple sclerosis (MS). In susceptible mice with an inadequate immune response, TMEV-IDD is triggered by virus persistence and maintained by a T cell mediated immunopathology. OT-mice are bred on a TMEV-resistant C57BL/6 background and own predominantly chicken ovalbumin (OVA)-specific populations of CD8+ T cells (OT-I) or CD4+ T cells (OT-II), respectively. It is hypothesized that the lack of antigen specific T cell populations increases susceptibility for a TMEV-infection in OT-mice on a TMEV-resistant C57BL/6 background. OT-I, OT-II, and C57BL/6 control mice were infected intracerebrally with the TMEV-BeAn strain. Mice were scored weekly for clinical disease and after necropsy, histological and immunohistochemical evaluation was performed. OT-I mice started to develop progressive motor dysfunction between 7 and 21 days post infection (dpi), leading up to hind limb paresis and critical weight loss, which resulted in euthanasia for humane reasons between 14 and 35 dpi. OT-I mice displayed a high cerebral virus load, an almost complete absence of CD8+ T cells from the central nervous system (CNS) and a significantly diminished CD4+ T cell response. Contrarily, only 60% (12 of 20) of infected OT-II mice developed clinical disease characterized by mild ataxia. 25% of clinically affected OT-II mice (3 of 12) made a full recovery. 5 of 12 OT-II mice with clinical disease developed severe motor dysfunction similar to OT-I mice and were euthanized for humane reasons between 13 and 37 dpi. OT-II mice displayed only low virus-immunoreactivity, but clinical disease correlated well with severely reduced infiltration of CD8+ T cells and the increased presence of CD4+ T cells in the brains of OT-II mice. Though further studies are needed to reveal the underlying pathomechanisms following TMEV infection in OT mice, findings indicate an immunopathological process as a main contributor to clinical disease in OT-II mice, while a direct virus-associated pathology may be the main contributor to clinical disease in TMEV-infected OT-I mice.


Subject(s)
Demyelinating Diseases , Theilovirus , Humans , Mice , Animals , CD8-Positive T-Lymphocytes , Ovalbumin , Demyelinating Diseases/pathology , Mice, Inbred C57BL , CD4-Positive T-Lymphocytes
6.
Sci Signal ; 16(790): eabn9405, 2023 06 20.
Article in English | MEDLINE | ID: mdl-37339181

ABSTRACT

During an immune response, T cells migrate from blood vessel walls into inflamed tissues by migrating across the endothelium and through extracellular matrix (ECM). Integrins facilitate T cell binding to endothelial cells and ECM proteins. Here, we report that Ca2+ microdomains observed in the absence of T cell receptor (TCR)/CD3 stimulation are initial signaling events triggered by adhesion to ECM proteins that increase the sensitivity of primary murine T cells to activation. Adhesion to the ECM proteins collagen IV and laminin-1 increased the number of Ca2+ microdomains in a manner dependent on the kinase FAK, phospholipase C (PLC), and all three inositol 1,4,5-trisphosphate receptor (IP3R) subtypes and promoted the nuclear translocation of the transcription factor NFAT-1. Mathematical modeling predicted that the formation of adhesion-dependent Ca2+ microdomains required the concerted activity of two to six IP3Rs and ORAI1 channels to achieve the increase in the Ca2+ concentration in the ER-plasma membrane junction that was observed experimentally and that required SOCE. Further, adhesion-dependent Ca2+ microdomains were important for the magnitude of the TCR-induced activation of T cells on collagen IV as assessed by the global Ca2+ response and NFAT-1 nuclear translocation. Thus, adhesion to collagen IV and laminin-1 sensitizes T cells through a mechanism involving the formation of Ca2+ microdomains, and blocking this low-level sensitization decreases T cell activation upon TCR engagement.


Subject(s)
Endothelial Cells , Extracellular Matrix Proteins , Mice , Animals , Extracellular Matrix Proteins/metabolism , T-Lymphocytes/metabolism , Receptors, Antigen, T-Cell/metabolism , Collagen/metabolism
7.
Biochim Biophys Acta Mol Cell Res ; 1870(6): 119485, 2023 08.
Article in English | MEDLINE | ID: mdl-37150482

ABSTRACT

Ca2+ signaling is one of the essential signaling systems for T lymphocyte activation, the latter being an essential step in the pathogenesis of autoimmune diseases such as multiple sclerosis (MS). Store-operated Ca2+ entry (SOCE) ensures long lasting Ca2+ signaling and is of utmost importance for major downstream T lymphocyte activation steps, e.g. nuclear localization of the transcription factor 'nuclear factor of activated T cells' (NFAT). 2-Methoxyestradiol (2ME2), an endogenous metabolite of estradiol (E2), blocks nuclear translocation of NFAT. The likely underlying mechanism is inhibition of SOCE, as shown for its synthetic sulfamate ester analogue 2-ethyl-3-sulfamoyloxy-17ß-cyanomethylestra-1,3,5(10)-triene (STX564). Here, we demonstrate that another synthetic bis-sulfamoylated 2ME2 derivative, 2-methoxyestradiol-3,17-O,O-bis-sulfamate (2-MeOE2bisMATE, STX140), an orally bioavailable, multi-targeting anticancer agent and potent steroid sulfatase (STS) inhibitor, antagonized SOCE in T lymphocytes. Downstream events, e.g. secretion of the pro-inflammatory cytokines interferon-γ and interleukin-17, were decreased by STX140 in in vitro experiments. Remarkably, STX140 dosed in vivo completely blocked the clinical disease in both active and transfer experimental autoimmune encephalomyelitis (EAE) in Lewis rats, a T cell-mediated animal model for MS, at a dose of 10 mg/kg/day i.p., whereas neither 2ME2 nor Irosustat, a pure STS inhibitor, showed any effect. The STS inhibitory activity of STX140 is therefore not responsible for its activity in this model. Taken together, inhibition of SOCE by STX140 resulting in full antagonism of clinical symptoms in EAE in the Lewis rat, paired with the known excellent bioavailability and pharmaceutical profile of this drug, open potentially new therapeutic avenues for the treatment of MS.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental , T-Lymphocytes , Rats , Animals , 2-Methoxyestradiol , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Rats, Inbred Lew , Pharmaceutical Preparations
8.
Front Immunol ; 14: 1105432, 2023.
Article in English | MEDLINE | ID: mdl-37090733

ABSTRACT

The intracerebral infection of mice with Theiler's murine encephalomyelitis virus (TMEV) represents a well-established animal model for multiple sclerosis (MS). Because CD28 is the main co-stimulatory molecule for the activation of T cells, we wanted to investigate its impact on the course of the virus infection as well as on a potential development of autoimmunity as seen in susceptible mouse strains for TMEV. In the present study, 5 weeks old mice on a C57BL/6 background with conventional or tamoxifen-induced, conditional CD28-knockout were infected intracerebrally with TMEV-BeAn. In the acute phase at 14 days post TMEV-infection (dpi), both CD28-knockout strains showed virus spread within the central nervous system (CNS) as an uncommon finding in C57BL/6 mice, accompanied by histopathological changes such as reduced microglial activation. In addition, the conditional, tamoxifen-induced CD28-knockout was associated with acute clinical deterioration and weight loss, which limited the observation period for this mouse strain to 14 dpi. In the chronic phase (42 and 147 dpi) of TMEV-infection, surprisingly only 33% of conventional CD28-knockout mice showed chronic TMEV-infection with loss of motor function concomitant with increased spinal cord inflammation, characterized by T- and B cell infiltration, microglial activation and astrogliosis at 33-42 dpi. Therefore, the clinical outcome largely depends on the time point of the CD28-knockout during development of the immune system. Whereas a fatal clinical outcome can already be observed in the early phase during TMEV-infection for conditional, tamoxifen-induced CD28-knockout mice, only one third of conventional CD28-knockout mice develop clinical symptoms later, accompanied by ongoing inflammation and an inability to clear the virus. However, the development of autoimmunity could not be observed in this C57BL/6 TMEV model irrespective of the time point of CD28 deletion.


Subject(s)
Multiple Sclerosis , Mice , Animals , CD28 Antigens/genetics , Disease Models, Animal , Mice, Knockout , Mice, Inbred C57BL
9.
Nat Neurosci ; 25(7): 887-899, 2022 07.
Article in English | MEDLINE | ID: mdl-35773544

ABSTRACT

The meninges, comprising the leptomeninges (pia and arachnoid layers) and the pachymeninx (dura layer), participate in central nervous system (CNS) autoimmunity, but their relative contributions remain unclear. Here we report on findings in animal models of CNS autoimmunity and in patients with multiple sclerosis, where, in acute and chronic disease, the leptomeninges were highly inflamed and showed structural changes, while the dura mater was only marginally affected. Although dural vessels were leakier than leptomeningeal vessels, effector T cells adhered more weakly to the dural endothelium. Furthermore, local antigen-presenting cells presented myelin and neuronal autoantigens less efficiently, and the activation of autoreactive T cells was lower in dural than leptomeningeal layers, preventing local inflammatory processes. Direct antigen application was required to evoke a local inflammatory response in the dura. Together, our data demonstrate an uneven involvement of the meningeal layers in CNS autoimmunity, in which effector T cell trafficking and activation are functionally confined to the leptomeninges, while the dura remains largely excluded from CNS autoimmune processes.


Subject(s)
Autoimmunity , Meninges , Multiple Sclerosis , Animals , Arachnoid , Central Nervous System , Dura Mater , Humans , Meninges/physiology
10.
Nature ; 603(7899): 138-144, 2022 03.
Article in English | MEDLINE | ID: mdl-35197636

ABSTRACT

Lung infections and smoking are risk factors for multiple sclerosis, a T-cell-mediated autoimmune disease of the central nervous system1. In addition, the lung serves as a niche for the disease-inducing T cells for long-term survival and for maturation into migration-competent effector T cells2. Why the lung tissue in particular has such an important role in an autoimmune disease of the brain is not yet known. Here we detected a tight interconnection between the lung microbiota and the immune reactivity of the brain. A dysregulation in the lung microbiome significantly influenced the susceptibility of rats to developing autoimmune disease of the central nervous system. Shifting the microbiota towards lipopolysaccharide-enriched phyla by local treatment with neomycin induced a type-I-interferon-primed state in brain-resident microglial cells. Their responsiveness towards autoimmune-dominated stimulation by type II interferons was impaired, which led to decreased proinflammatory response, immune cell recruitment and clinical signs. Suppressing lipopolysaccharide-producing lung phyla with polymyxin B led to disease aggravation, whereas addition of lipopolysaccharide-enriched phyla or lipopolysaccharide recapitulated the neomycin effect. Our data demonstrate the existence of a lung-brain axis in which the pulmonary microbiome regulates the immune reactivity of the central nervous tissue and thereby influences its susceptibility to autoimmune disease development.


Subject(s)
Autoimmunity , Brain , Microbiota , Multiple Sclerosis , Animals , Autoimmune Diseases , Brain/physiology , Lipopolysaccharides/pharmacology , Lung/microbiology , Multiple Sclerosis/etiology , Neomycin , Rats
11.
Sci Transl Med ; 14(626): eabj0473, 2022 01 05.
Article in English | MEDLINE | ID: mdl-34985970

ABSTRACT

The migration of circulating leukocytes into the central nervous system (CNS) is a key driver of multiple sclerosis (MS) pathogenesis. The monoclonal antibody natalizumab proved that pharmaceutically obstructing this process is an effective therapeutic approach for treating relapsing-remitting MS (RRMS). Unfortunately, the clinical efficacy of natalizumab is somewhat offset by its incapacity to control the progressive forms of MS (PMS) and by life-threatening side effects in RRMS rising from the expression of its molecular target, very late antigen 4 (VLA4), on most immune cells and consequent impairment of CNS immunosurveillance. Here, we identified dual immunoglobulin domain containing cell adhesion molecule (DICAM) as a cell trafficking molecule preferentially expressed by T helper 17 (TH17)­polarized CD4+ T lymphocytes. We found that DICAM expression on circulating CD4+ T cells was increased in patients with active RRMS and PMS disease courses, and expression of DICAM ligands was increased on the blood-brain barrier endothelium upon inflammation and in MS lesions. Last, we demonstrated that pharmaceutically neutralizing DICAM reduced murine and human TH17 cell trafficking across the blood-brain barrier in vitro and in vivo, and alleviated disease symptoms in four distinct murine autoimmune encephalomyelitis models, including relapsing-remitting and progressive disease models. Collectively, our data highlight DICAM as a candidate therapeutic target to impede the migration of disease-inducing leukocytes into the CNS in both RRMS and PMS and suggest that blocking DICAM with a monoclonal antibody may be a promising therapeutic approach.


Subject(s)
Multiple Sclerosis, Relapsing-Remitting , Multiple Sclerosis , Animals , Blood-Brain Barrier/metabolism , Cell Adhesion Molecules/metabolism , Humans , Mice , Multiple Sclerosis/drug therapy , Multiple Sclerosis/metabolism , Natalizumab/metabolism , Natalizumab/pharmacology , Natalizumab/therapeutic use , Neuroinflammatory Diseases , T-Lymphocytes/metabolism , Th17 Cells
12.
Sci Signal ; 14(709): eabe3800, 2021 Nov 16.
Article in English | MEDLINE | ID: mdl-34784249

ABSTRACT

The formation of Ca2+ microdomains during T cell activation is initiated by the production of nicotinic acid adenine dinucleotide phosphate (NAADP) from its reduced form NAADPH. The reverse reaction­NAADP to NAADPH­is catalyzed by glucose 6-phosphate dehydrogenase (G6PD). Here, we identified NADPH oxidases NOX and DUOX as NAADP-forming enzymes that convert NAADPH to NAADP under physiological conditions in vitro. T cells express NOX1, NOX2, and, to a minor extent, DUOX1 and DUOX2. Local and global Ca2+ signaling were decreased in mouse T cells with double knockout of Duoxa1 and Duoxa2 but not with knockout of Nox1 or Nox2. Ca2+ microdomains in the first 15 s upon T cell activation were significantly decreased in Duox2−/− but not in Duox1−/− T cells, whereas both DUOX1 and DUOX2 were required for global Ca2+ signaling between 4 and 12 min after stimulation. Our findings suggest that a DUOX2- and G6PD-catalyzed redox cycle rapidly produces and degrades NAADP through NAADPH as an inactive intermediate.


Subject(s)
Calcium Signaling , Dual Oxidases , Lymphocyte Activation , NADPH Oxidases , NADP/biosynthesis , T-Lymphocytes , Animals , Dual Oxidases/genetics , HEK293 Cells , Humans , Jurkat Cells , Mice, Knockout , NADP/analogs & derivatives , NADPH Oxidases/genetics , T-Lymphocytes/enzymology
13.
Int J Mol Sci ; 22(16)2021 Aug 06.
Article in English | MEDLINE | ID: mdl-34445189

ABSTRACT

Tamoxifen is frequently used in murine knockout systems with CreER/LoxP. Besides possible neuroprotective effects, tamoxifen is described as having a negative impact on adult neurogenesis. The present study investigated the effect of a high-dose tamoxifen application on Theiler's murine encephalomyelitis virus (TMEV)-induced hippocampal damage. Two weeks after TMEV infection, 42% of the untreated TMEV-infected mice were affected by marked inflammation with neuronal loss, whereas 58% exhibited minor inflammation without neuronal loss. Irrespective of the presence of neuronal loss, untreated mice lacked TMEV antigen expression within the hippocampus at 14 days post-infection (dpi). Interestingly, tamoxifen application 0, 2 and 4, or 5, 7 and 9 dpi decelerated virus elimination and markedly increased neuronal loss to 94%, associated with increased reactive astrogliosis at 14 dpi. T cell infiltration, microgliosis and expression of water channels were similar within the inflammatory lesions, regardless of tamoxifen application. Applied at 0, 2 and 4 dpi, tamoxifen had a negative impact on the number of doublecortin (DCX)-positive cells within the dentate gyrus (DG) at 14 dpi, without a long-lasting effect on neuronal loss at 147 dpi. Thus, tamoxifen application during a TMEV infection is associated with transiently increased neuronal loss in the hippocampus, increased reactive astrogliosis and decreased neurogenesis in the DG.


Subject(s)
Estrogen Antagonists/adverse effects , Hippocampus/drug effects , Neurons/drug effects , Tamoxifen/adverse effects , Animals , Cardiovirus Infections/complications , Cardiovirus Infections/pathology , Cardiovirus Infections/veterinary , Cell Death/drug effects , Doublecortin Protein , Hippocampus/pathology , Mice, Inbred C57BL , Neurons/pathology , Theilovirus/physiology
14.
Brain Pathol ; 31(6): e12994, 2021 11.
Article in English | MEDLINE | ID: mdl-34137105

ABSTRACT

Tamoxifen gavage is a commonly used method to induce genetic modifications in cre-loxP systems. As a selective estrogen receptor modulator (SERM), the compound is known to have immunomodulatory and neuroprotective properties in non-infectious central nervous system (CNS) disorders. It can even cause complete prevention of lesion development as seen in experimental autoimmune encephalitis (EAE). The effect on infectious brain disorders is scarcely investigated. In this study, susceptible SJL mice were infected intracerebrally with Theiler's murine encephalomyelitis virus (TMEV) and treated three times with a tamoxifen-in-oil-gavage (TOG), resembling an application scheme for genetically modified mice, starting at 0, 18, or 38 days post infection (dpi). All mice developed 'TMEV-induced demyelinating disease' (TMEV-IDD) resulting in inflammation, axonal loss, and demyelination of the spinal cord. TOG had a positive effect on the numbers of oligodendrocytes and oligodendrocyte progenitor cells, irrespective of the time point of application, whereas late application (starting 38 dpi) was associated with increased demyelination of the spinal cord white matter 85 dpi. Furthermore, TOG had differential effects on the CD4+ and CD8+ T cell infiltration into the CNS, especially a long lasting increase of CD8+ cells was detected in the inflamed spinal cord, depending of the time point of TOG application. Number of TMEV-positive cells, astrogliosis, astrocyte phenotype, apoptosis, clinical score, and motor function were not measurably affected. These data indicate that tamoxifen gavage has a double-edged effect on TMEV-IDD with the promotion of oligodendrocyte differentiation and proliferation, but also increased demyelination, depending on the time point of application. The data of this study suggest that tamoxifen has also partially protective functions in infectious CNS disease. These effects should be considered in experimental studies using the cre-loxP system, especially in models investigating neuropathologies.


Subject(s)
Brain/pathology , Multiple Sclerosis/pathology , Spinal Cord/pathology , Tamoxifen/administration & dosage , Administration, Oral , Animals , Cardiovirus Infections/pathology , Demyelinating Diseases/pathology , Disease Models, Animal , Female , Mice , Theilovirus
15.
Sci Signal ; 14(675)2021 03 23.
Article in English | MEDLINE | ID: mdl-33758062

ABSTRACT

NAADP-evoked Ca2+ release through type 1 ryanodine receptors (RYR1) is a major mechanism underlying the earliest signals in T cell activation, which are the formation of Ca2+ microdomains. In our characterization of the molecular machinery underlying NAADP action, we identified an NAADP-binding protein, called hematological and neurological expressed 1-like protein (HN1L) [also known as Jupiter microtubule-associated homolog 2 (JPT2)]. Gene deletion of Hn1l/Jpt2 in human Jurkat and primary rat T cells resulted in decreased numbers of initial Ca2+ microdomains and delayed the onset and decreased the amplitude of global Ca2+ signaling. Photoaffinity labeling demonstrated direct binding of NAADP to recombinant HN1L/JPT2. T cell receptor/CD3-dependent coprecipitation of HN1L/JPT2 with RYRs and colocalization of these proteins suggest that HN1L/JPT2 connects NAADP formation with the activation of RYR channels within the first seconds of T cell activation. Thus, HN1L/JPT2 enables NAADP to activate Ca2+ release from the endoplasmic reticulum through RYR.


Subject(s)
Calcium/metabolism , Membrane Microdomains/metabolism , Microtubule-Associated Proteins/metabolism , NADP/analogs & derivatives , Animals , CD3 Complex/metabolism , Calcium Signaling , Endoplasmic Reticulum/metabolism , Humans , Jurkat Cells , Lymphocyte Activation , Microtubule-Associated Proteins/genetics , NADP/metabolism , Protein Binding , Rats , Receptors, Antigen, T-Cell/metabolism , Ryanodine Receptor Calcium Release Channel/metabolism , T-Lymphocytes/metabolism
16.
Biochim Biophys Acta Mol Cell Res ; 1868(6): 118988, 2021 05.
Article in English | MEDLINE | ID: mdl-33581218

ABSTRACT

T cell activation starts with formation of second messengers that release Ca2+ from the endoplasmic reticulum (ER) and thereby activate store-operated Ca2+ entry (SOCE), one of the essential signals for T cell activation. Recently, the steroidal 2-methoxyestradiol was shown to inhibit nuclear translocation of the nuclear factor of activated T cells (NFAT). We therefore investigated 2-methoxyestradiol for inhibition of Ca2+ entry in T cells, screened a library of 2-methoxyestradiol analogues, and characterized the derivative 2-ethyl-3-sulfamoyloxy-17ß-cyanomethylestra-1,3,5(10)-triene (STX564) as a novel, potent and specific SOCE inhibitor. STX564 inhibits Ca2+ entry via SOCE without affecting other ion channels and pumps involved in Ca2+ signaling in T cells. Downstream effects such as cytokine expression and cell proliferation were also inhibited by both 2-methoxyestradiol and STX564, which has potential as a new chemical biology tool.


Subject(s)
2-Methoxyestradiol/pharmacology , Calcium Signaling/drug effects , Estrenes/pharmacology , NFATC Transcription Factors/metabolism , T-Lymphocytes/cytology , 2-Methoxyestradiol/analogs & derivatives , Animals , Calcium/metabolism , Cell Line , Cell Nucleus/drug effects , Cell Nucleus/metabolism , Estrenes/chemical synthesis , Estrenes/chemistry , Gene Expression Regulation/drug effects , Humans , Jurkat Cells , Lymphocyte Activation/drug effects , Protein Transport/drug effects , Rats , T-Lymphocytes/drug effects , T-Lymphocytes/metabolism
17.
J Clin Invest ; 130(4): 1977-1990, 2020 04 01.
Article in English | MEDLINE | ID: mdl-32149735

ABSTRACT

Angiopoietin-2 (Ang2), a ligand of the endothelial Tie2 tyrosine kinase, is involved in vascular inflammation and leakage in critically ill patients. However, the role of Ang2 in demyelinating central nervous system (CNS) autoimmune diseases is unknown. Here, we report that Ang2 is critically involved in the pathogenesis of experimental autoimmune encephalomyelitis (EAE), a rodent model of multiple sclerosis. Ang2 expression was induced in CNS autoimmunity, and transgenic mice overexpressing Ang2 specifically in endothelial cells (ECs) developed a significantly more severe EAE. In contrast, treatment with Ang2-blocking Abs ameliorated neuroinflammation and decreased spinal cord demyelination and leukocyte infiltration into the CNS. Similarly, Ang2-binding and Tie2-activating Ab attenuated the development of CNS autoimmune disease. Ang2 blockade inhibited expression of EC adhesion molecules, improved blood-brain barrier integrity, and decreased expression of genes involved in antigen presentation and proinflammatory responses of microglia and macrophages, which was accompanied by inhibition of α5ß1 integrin activation in microglia. Taken together, our data suggest that Ang2 provides a target for increasing Tie2 activation in ECs and inhibiting proinflammatory polarization of CNS myeloid cells via α5ß1 integrin in neuroinflammation. Thus, Ang2 targeting may serve as a therapeutic option for the treatment of CNS autoimmune disease.


Subject(s)
Angiopoietin-2/immunology , Blood-Brain Barrier/immunology , Cell Movement/immunology , Encephalomyelitis, Autoimmune, Experimental/immunology , Endothelial Cells/immunology , Leukocytes/immunology , Multiple Sclerosis/immunology , Angiopoietin-2/genetics , Animals , Blood-Brain Barrier/pathology , Cell Movement/genetics , Encephalomyelitis, Autoimmune, Experimental/genetics , Encephalomyelitis, Autoimmune, Experimental/pathology , Endothelial Cells/pathology , Gene Expression Regulation/genetics , Gene Expression Regulation/immunology , Inflammation/genetics , Inflammation/immunology , Inflammation/pathology , Integrin alpha5beta1/genetics , Integrin alpha5beta1/immunology , Leukocytes/pathology , Mice , Mice, Transgenic , Microglia/immunology , Microglia/pathology , Multiple Sclerosis/genetics , Multiple Sclerosis/pathology
18.
Trends Neurosci ; 42(10): 667-679, 2019 10.
Article in English | MEDLINE | ID: mdl-31474310

ABSTRACT

Neuro-immune interactions are not only vital for the control of neurotropic pathogens, but also appear to influence brain development and homeostasis. During immune surveillance, T cells can patrol the CNS-associated border regions to sense pathogenic alterations. While access to the CNS parenchyma is restricted in the steady state, various disease processes can initiate parenchymal T cell CNS invasion. However, to breach the glia limitans, T cells must become reactivated within the meningeal spaces. T cells cannot sense native antigens (Ags), but instead recognize small processed peptides bound to MHC molecules and presented on the surface of Ag-presenting cells (APCs). In this review, we focus on (CD4+) T cell-CNS interactions that are dependent on Ag recognition. We discuss the potential paths and mechanisms of T cell entry into the CNS, in particular with respect to CNS-resident APCs, which present CNS-derived Ag in the absence of inflammation.


Subject(s)
Central Nervous System/immunology , T-Lymphocytes/immunology , Animals , Antigen Presentation , Humans
19.
Nature ; 567(7749): E15, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30867589

ABSTRACT

In this Article, owing to an error during the production process, the y-axis label of Fig. 2c should read "Number of Tß-syn cells" rather than "Number of T1ß-syn cells" and the left and right panels of Fig. 4 should be labelled 'a' and 'b', respectively. These errors have been corrected online.

20.
Nature ; 566(7745): 503-508, 2019 02.
Article in English | MEDLINE | ID: mdl-30787438

ABSTRACT

The grey matter is a central target of pathological processes in neurodegenerative disorders such as Parkinson's and Alzheimer's diseases. The grey matter is often also affected in multiple sclerosis, an autoimmune disease of the central nervous system. The mechanisms that underlie grey matter inflammation and degeneration in multiple sclerosis are not well understood. Here we show that, in Lewis rats, T cells directed against the neuronal protein ß-synuclein specifically invade the grey matter and that this is accompanied by the presentation of multifaceted clinical disease. The expression pattern of ß-synuclein induces the local activation of these T cells and, therefore, determined inflammatory priming of the tissue and targeted recruitment of immune cells. The resulting inflammation led to significant changes in the grey matter, which ranged from gliosis and neuronal destruction to brain atrophy. In humans, ß-synuclein-specific T cells were enriched in patients with chronic-progressive multiple sclerosis. These findings reveal a previously unrecognized role of ß-synuclein in provoking T-cell-mediated pathology of the central nervous system.


Subject(s)
Gray Matter/immunology , Gray Matter/pathology , Multiple Sclerosis, Chronic Progressive/immunology , Multiple Sclerosis, Chronic Progressive/pathology , T-Lymphocytes/immunology , beta-Synuclein/immunology , Animals , Brain/pathology , Cell Movement/immunology , Female , Gene Expression Regulation , Gliosis/pathology , Humans , Inflammation/immunology , Inflammation/pathology , Lymphocyte Activation , Lymphocyte Count , Male , Multiple Sclerosis, Chronic Progressive/blood , Neurodegenerative Diseases/immunology , Neurodegenerative Diseases/pathology , Neurons/pathology , Rats , Rats, Inbred Lew , T-Lymphocytes/metabolism , T-Lymphocytes/pathology , beta-Synuclein/analysis , beta-Synuclein/genetics , beta-Synuclein/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL