Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Front Microbiol ; 13: 997849, 2022.
Article in English | MEDLINE | ID: mdl-36386654

ABSTRACT

Watersheds contaminated with municipal, hospital, and agricultural residues are recognized as reservoirs for bacteria carrying antibiotic resistance genes (ARGs). The objective of this study was to determine the potential of environmental bacterial communities from the highly contaminated La Paz River basin in Bolivia to transfer ARGs to an Escherichia coli lab strain used as the recipient. Additionally, we tested ZnSO4 and CuSO4 at sub-inhibitory concentrations as stressors and analyzed transfer frequencies (TFs), diversity, richness, and acquired resistance profiles. The bacterial communities were collected from surface water in an urban site close to a hospital and near an agricultural area. High transfer potentials of a large set of resistance factors to E. coli were observed at both sites. Whole-genome sequencing revealed that putative plasmids belonging to the incompatibility group N (IncN, IncN2, and IncN3) were predominant among the transconjugants. All IncN variants were verified to be mobile by a second conjugation step. The plasmid backbones were similar to other IncN plasmids isolated worldwide and carried a wide range of ARGs extensively corroborated by phenotypic resistance patterns. Interestingly, all transconjugants also acquired the class 1 integron intl1, which is commonly known as a proxy for anthropogenic pollution. The addition of ZnSO4 and CuSO4 at sub-inhibitory concentrations did not affect the transfer rate. Metal resistance genes were absent from most transconjugants, suggesting a minor role, if any, of metals in the spread of multidrug-resistant plasmids at the investigated sites.

2.
PLoS One ; 14(1): e0210735, 2019.
Article in English | MEDLINE | ID: mdl-30640938

ABSTRACT

Water borne diarrheal pathogens might accumulate in river water and cause contamination of drinking and irrigation water. The La Paz River basin, including the Choqueyapu River, flows through La Paz city in Bolivia where it is receiving sewage, and residues from inhabitants, hospitals, and industry. Using quantitative real-time PCR (qPCR), we determined the quantity and occurrence of diarrheagenic Escherichia coli (DEC), Salmonella enterica, Klebsiella pneumoniae, Shigella spp. and total enterobacteria in river water, downstream agricultural soil, and irrigated crops, during one year of sampling. The most abundant and frequently detected genes were gapA and eltB, indicating presence of enterobacteria and enterotoxigenic E. coli (ETEC) carrying the heat labile toxin, respectively. Pathogen levels in the samples were significantly positively associated with high water conductivity and low water temperature. In addition, a set of bacterial isolates from water, soil and crops were analyzed by PCR for presence of the genes blaCTX-M, blaKPC, blaNDM, blaVIM and blaOXA-48. Four isolates were found to be positive for blaCTX-M genes and whole genome sequencing identified them as E. coli and one Enterobacter cloacae. The E. coli isolates belonged to the emerging, globally disseminated, multi-resistant E. coli lineages ST648, ST410 and ST162. The results indicate not only a high potential risk of transmission of diarrheal diseases by the consumption of contaminated water and vegetables but also the possibility of antibiotic resistance transfer from the environment to the community.


Subject(s)
Diarrhea/microbiology , Enterobacteriaceae/genetics , Rivers/microbiology , Bolivia , Drug Resistance, Multiple, Bacterial/genetics , Enterobacteriaceae/drug effects , Enterobacteriaceae/enzymology , Enterotoxigenic Escherichia coli , Humans , Real-Time Polymerase Chain Reaction , Vegetables , Whole Genome Sequencing , beta-Lactamases/genetics
SELECTION OF CITATIONS
SEARCH DETAIL