Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Thorax ; 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38418195

ABSTRACT

INTRODUCTION: Altered complement component 3 (C3) activation in patients with alpha-1 antitrypsin (AAT) deficiency (AATD) has been reported. To understand the potential impact on course of inflammation, the aim of this study was to investigate whether C3d, a cleavage-product of C3, triggers interleukin (IL)-1ß secretion via activation of NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3) inflammasome. The objective was to explore the effect of AAT augmentation therapy in patients with AATD on the C3d/complement receptor 3 (CR3) signalling axis of monocytes and on circulating pro-inflammatory markers. METHODS: Inflammatory mediators were detected in blood from patients with AATD (n=28) and patients with AATD receiving augmentation therapy (n=19). Inflammasome activation and IL-1ß secretion were measured in monocytes of patients with AATD, and following C3d stimulation in the presence or absence of CR3 or NLRP3 inhibitors. RESULTS: C3d acting via CR3 induces NLRP3 and pro-IL-1ß production, and through induction of endoplasmic reticulum (ER) stress and calcium flux, triggers caspase-1 activation and IL-1ß secretion. Treatment of individuals with AATD with AAT therapy results in decreased plasma levels of C3d (3.0±1.2 µg/mL vs 1.3±0.5 µg/mL respectively, p<0.0001) and IL-1ß (115.4±30 pg/mL vs 73.3±20 pg/mL, respectively, p<0.0001), with a 2.0-fold decrease in monocyte NLRP3 protein expression (p=0.0303), despite continued ER stress activation. DISCUSSION: These results provide strong insight into the mechanism of complement-driven inflammation associated with AATD. Although the described variance in C3d and NLRP3 activation decreased post AAT augmentation therapy, results demonstrate persistent C3d and monocyte ER stress, with implications for new therapeutics and clinical practice.

2.
ERJ Open Res ; 9(3)2023 May.
Article in English | MEDLINE | ID: mdl-37313399

ABSTRACT

Background: Animal models using intratracheal instillation show that elastase, unopposed by α1-antitrypsin (AAT), causes alveolar damage and haemorrhage associated with emphysematous changes. The aim of the present study was to characterise any relationship between alveolar haemorrhage and human AAT deficiency (AATD) using bronchoalveolar lavage (BAL) and lung explant samples from AATD subjects. Methods: BAL samples (17 patients, 15 controls) were evaluated for free haem (iron protoporphyrin IX) and total iron concentrations. Alveolar macrophage activation patterns were assessed using RNA sequencing and validated in vitro using haem-stimulated, monocyte-derived macrophages. Lung explants (seven patients, four controls) were assessed for iron sequestration protein expression patterns using Prussian blue stain and ferritin immunohistochemistry, as well as ferritin iron imaging and elemental analysis by transmission electron microscopy. Tissue oxidative damage was assessed using 8-hydroxy-2'-deoxyguanosine immunohistochemistry. Results: BAL collected from AATD patients showed significantly elevated free haem and total iron concentrations. Alveolar and interstitial macrophages in AATD explants showed elevated iron and ferritin accumulation in large lysosomes packed by iron oxide cores with degraded ferritin protein cages. BAL macrophage RNA sequencing showed innate pro-inflammatory activation, replicated in vitro by haemin exposure, which also triggered reactive oxygen species generation. AATD explants showed massive oxidative DNA damage in both lung epithelial cells and macrophages. Conclusions: BAL and tissue markers of alveolar haemorrhage, together with molecular and cellular evidence of macrophage innate pro-inflammatory activation and oxidative damage, are consistent with free haem stimulation. Overall, this initial study provides evidence for a pathogenetic role of elastase-induced alveolar haemorrhage in AATD emphysema.

3.
Chronic Obstr Pulm Dis ; 10(1): 7-21, 2023 Jan 25.
Article in English | MEDLINE | ID: mdl-36367950

ABSTRACT

The SERPINA1 gene encodes the serine protease inhibitor alpha-1 antitrypsin (AAT) and is located on chromosome 14q31-32.3 in a cluster of homologous genes likely formed by exon duplication. AAT has a variety of anti-inflammatory properties. Its clinical relevance is best illustrated by the genetic disease alpha-1 antitrypsin deficiency (AATD) which is associated with an increased risk for chronic obstructive pulmonary disease (COPD) and cirrhosis. While 2 single nucleotide polymorphisms (SNPs) , S and Z, are responsible for more than 95% of all individuals with AATD, there are a number of rare variants associated with deficiency and dysfunction, as well as those associated with normal levels and function. Our laboratory has identified a number of novel AAT alleles that we report in this manuscript. We screened more than 500,000 individuals for AATD alleles through our testing program over the past 20 years. The characterization of these alleles was accomplished by DNA sequencing, measurement of AAT plasma levels and isoelectric focusing at pH 4-5. We report 22 novel AAT alleles discovered through our screening programs, such as Zlittle rock and QOchillicothe, and review the current literature of known AAT genetic variants.

4.
PLoS One ; 17(9): e0274427, 2022.
Article in English | MEDLINE | ID: mdl-36084115

ABSTRACT

BACKGROUND: Severe acute respiratory syndrome caused by a novel coronavirus 2 (SARS-CoV-2) has infected more than 18 million people worldwide. The activation of endothelial cells is a hallmark of signs of SARS-CoV-2 infection that includes altered integrity of vessel barrier and endothelial inflammation. OBJECTIVES: Pulmonary endothelial activation is suggested to be related to the profound neutrophil elastase (NE) activity, which is necessary for sterilization of phagocytosed bacterial pathogens. However, unopposed activity of NE increases alveolocapillary permeability and extracellular matrix degradation. The uncontrolled protease activity of NE during the inflammatory phase of lung diseases might be due to the resistance of exosome associated NE to inhibition by alpha-1 antitrypsin. METHOD: 31 subjects with a diagnosis of SARS-CoV2 infection were recruited in the disease group and samples from 30 voluntaries matched for age and sex were also collected for control. RESULTS: We measured the plasma levels of exosome-associated NE in SARS-CoV-2 patients which, were positively correlated with sign of endothelial damage in those patients as determined by plasma levels of LDH. Notably, we also found strong correlation with plasma levels of alpha-1 antitrypsin and exosome-associated NE in SARS-CoV-2 patients. Using macrovascular endothelial cells, we also observed that purified NE activity is inhibited by purified alpha-1 antitrypsin while, NE associated with exosomes are resistant to inhibition and show less sensitivity to alpha-1 antitrypsin inhibitory activity, in vitro. CONCLUSIONS: Our results point out the role of exosome-associated NE in exacerbation of endothelial injury in SARS-CoV-2 infection. We have demonstrated that exosome-associated NE could be served as a new potential therapeutic target of severe systemic manifestations of SARS-CoV-2 infection.


Subject(s)
COVID-19 , Exosomes , alpha 1-Antitrypsin Deficiency , Endothelial Cells/metabolism , Exosomes/metabolism , Humans , Leukocyte Elastase/metabolism , RNA, Viral , SARS-CoV-2 , alpha 1-Antitrypsin/metabolism
5.
Int J Mol Sci ; 22(24)2021 Dec 09.
Article in English | MEDLINE | ID: mdl-34948056

ABSTRACT

Alpha-1 antitrypsin deficiency (AATD) is caused by a single mutation in the SERPINA1 gene, which culminates in the accumulation of misfolded alpha-1 antitrypsin (ZAAT) within the endoplasmic reticulum (ER) of hepatocytes. AATD is associated with liver disease resulting from hepatocyte injury due to ZAAT-mediated toxic gain-of-function and ER stress. There is evidence of mitochondrial damage in AATD-mediated liver disease; however, the mechanism by which hepatocyte retention of aggregated ZAAT leads to mitochondrial injury is unknown. Previous studies have shown that ER stress is associated with both high concentrations of fatty acids and mitochondrial dysfunction in hepatocytes. Using a human AAT transgenic mouse model and hepatocyte cell lines, we show abnormal mitochondrial morphology and function, and dysregulated lipid metabolism, which are associated with hepatic expression and accumulation of ZAAT. We also describe a novel mechanism of ZAAT-mediated mitochondrial dysfunction. We provide evidence that misfolded ZAAT translocates to the mitochondria for degradation. Furthermore, inhibition of ZAAT expression restores the mitochondrial function in ZAAT-expressing hepatocytes. Altogether, our results show that ZAAT aggregation in hepatocytes leads to mitochondrial dysfunction. Our findings suggest a plausible model for AATD liver injury and the possibility of mechanism-based therapeutic interventions for AATD liver disease.


Subject(s)
Hepatocytes/cytology , alpha 1-Antitrypsin Deficiency/pathology , alpha 1-Antitrypsin/genetics , alpha 1-Antitrypsin/metabolism , Animals , Cell Line , Disease Models, Animal , Endoplasmic Reticulum Stress , Gain of Function Mutation , Gene Expression Profiling , Hepatocytes/metabolism , Humans , Mice , Mice, Transgenic , Protein Transport , Proteolysis , Sequence Analysis, RNA , alpha 1-Antitrypsin/chemistry , alpha 1-Antitrypsin Deficiency/genetics , alpha 1-Antitrypsin Deficiency/metabolism
7.
Neoplasia ; 11(10): 1012-21, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19794960

ABSTRACT

Protein phosphatase 2A (PP2A) functions as a potent tumor suppressor, but its mechanism(s) remains enigmatic. Specific disruption of PP2A by either expression of SV40 small tumor antigen or depletion of endogenous PP2A/C by RNA interference inhibits Ku DNA binding and DNA-PK activities, which results in suppression of DNA double-strand break (DSB) repair and DNA end-joining in association with increased genetic instability (i.e., chromosomal and chromatid breaks). Overexpression of the PP2A catalytic subunit (PP2A/C) enhances Ku and DNA-PK activities with accelerated DSB repair. Camptothecin-induced DSBs promote PP2A to associate with Ku 70 and Ku 86. PP2A directly dephosphorylates Ku as well as the DNA-PK catalytic subunit (DNA-PKcs) in vitro and in vivo, which enhances the formation of a functional Ku/DNA-PKcs complex. Intriguingly, PP2A promotes DSB repair in wild type mouse embryonic fibroblast (MEF) cells but has no such effect in Ku-deficient MEF cells, suggesting that the Ku 70/86 heterodimer is required for PP2A promotion of DSB repair. Thus, PP2A promotion of DSB repair may occur in a novel mechanism by activating the nonhomologous end-joining pathway through direct dephosphorylation of Ku and DNA-PKcs, which may contribute to maintenance of genetic stability.


Subject(s)
DNA Breaks, Double-Stranded , DNA Repair/physiology , Protein Phosphatase 2/metabolism , Signal Transduction/physiology , Animals , Antigens, Nuclear/chemistry , Antigens, Nuclear/genetics , Antigens, Nuclear/metabolism , Apoptosis , Blotting, Western , Cell Line, Tumor , Cell Survival , Cells, Cultured , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Electrophoresis, Gel, Pulsed-Field , Embryo, Mammalian/cytology , Fibroblasts/cytology , Fibroblasts/metabolism , Flow Cytometry , Humans , Ku Autoantigen , Mice , Mice, Knockout , Phosphorylation , Protein Multimerization , Protein Phosphatase 2/genetics , RNA Interference , Recombination, Genetic , Transfection
8.
Gene ; 444(1-2): 1-9, 2009 Sep 01.
Article in English | MEDLINE | ID: mdl-19481140

ABSTRACT

Tnk1/Kos1 is a non-receptor protein tyrosine kinase found to be a tumor suppressor. It negatively regulates cell growth by indirectly suppressing Ras activity. We identified and characterized the critical cis-elements required for Tnk1/Kos1's promoter activity. Results indicate that the murine Tnk1 promoter lacks a conventional TATA, CAAT or initiator element (Inr) but contains multiple transcription start sites. Transcription is initiated by a TATA-like element composed of an AT rich sequence at -30 (30 bp upstream) from the major transcription start site and an Inr-like element that overlaps the multiple start sites. Deletion analysis of the m-Tnk1 promoter reveals the presence of both positive (-25 to -151) and negative (-151 to -1201) regulatory regions. The three GC boxes which bind Sp1 and Sp3 with high affinity, an AP2 site (that overlaps with an AML1 site) and a MED1 site comprise the necessary cis-elements of the proximal promoter required for both constitutive and inducible Tnk1/Kos1 expression. Importantly, results reveal that cellular stress reverses the repression of Tnk1/Kos1 and induces its expression through increased high affinity interactions between nuclear proteins Sp1, Sp3, AP2 and MED1 for the m-Tnk1 promoter. These findings provide a mechanism by which the m-Tnk1 promoter can be dynamically regulated during normal growth.


Subject(s)
Promoter Regions, Genetic , Protein-Tyrosine Kinases/genetics , Transcription Initiation Site , 3T3 Cells , Animals , Base Sequence , Mediator Complex Subunit 1 , Mice , Molecular Sequence Data , Protein-Tyrosine Kinases/biosynthesis , Regulatory Sequences, Nucleic Acid , Sp1 Transcription Factor/genetics , Sp1 Transcription Factor/metabolism , Sp3 Transcription Factor/genetics , Sp3 Transcription Factor/metabolism , Transcription Factor AP-2/genetics , Transcription Factor AP-2/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Transcriptional Activation
9.
Mol Cell ; 29(4): 488-98, 2008 Feb 29.
Article in English | MEDLINE | ID: mdl-18313386

ABSTRACT

Bcl2 can enhance susceptibility to carcinogenesis, but the mechanism(s) remains fragmentary. Here we discovered that Bcl2 suppresses DNA double-strand-break (DSB) repair and V(D)J recombination by downregulating Ku DNA binding activity, which is associated with increased genetic instability. Exposure of cells to ionizing radiation enhances Bcl2 expression in the nucleus, which interacts with both Ku70 and Ku86 via its BH1 and BH4 domains. Removal of the BH1 or BH4 domain abrogates the inhibitory effect of Bcl2 on Ku DNA binding, DNA-PK, and DNA end-joining activities, which results in the failure of Bcl2 to block DSB repair as well as V(D)J recombination. Intriguingly, Bcl2 directly disrupts the Ku/DNA-PKcs complex in vivo and in vitro. Thus, Bcl2 suppression of the general DSB repair and V(D)J recombination may occur in a mechanism by inhibiting the nonhomologous end-joining pathway, which may lead to an accumulation of DNA damage and genetic instability.


Subject(s)
Apoptosis/physiology , DNA Damage , DNA Repair , Proto-Oncogene Proteins c-bcl-2/metabolism , Recombination, Genetic , Animals , Cell Line, Tumor , DNA Helicases/genetics , DNA Helicases/metabolism , DNA-Activated Protein Kinase/genetics , DNA-Activated Protein Kinase/metabolism , Genomic Instability , Humans , Ku Autoantigen , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Models, Molecular , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Protein Structure, Tertiary , Proto-Oncogene Proteins c-bcl-2/chemistry , Proto-Oncogene Proteins c-bcl-2/genetics , Radiation, Ionizing , Signal Transduction/physiology , Subcellular Fractions/metabolism
10.
Exp Hematol ; 36(2): 128-39, 2008 Feb.
Article in English | MEDLINE | ID: mdl-18023519

ABSTRACT

Bcl2 is a potent antiapoptotic gene that can increase resistance of adult bone marrow hematopoietic progenitor cells to lethal irradiation, and thereby preserve their ability to differentiate. However, the effect of Bcl2 on murine embryonic stem (ES) cells induced to undergo hematopoietic differentiation in the absence of a toxic stress is not known. To test this, murine CCE-ES cells that can be induced to undergo hematopoietic differentiation in a two-step process that results in upregulation of Bcl2 were used. Upregulation of Bcl2 precedes formation of hematopoietic embryoid bodies (EB) and their further differentiation into hematopoietic colony-forming units, when plated as single cells in methylcellulose. ES cells stably expressing a Bcl2 siRNA plasmid to "knock-down" endogenous expression or cells expressing wild-type (WT) Bcl2 or phosphomimetic Bcl2 mutants were examined. ES cells expressing the Bcl2 siRNA or those expressing a dominant-negative, nonphosphorylatable Bcl2 display a strikingly reduced capacity to form hematopoietic EBs and colony-forming units compared to cells expressing WT or phosphomimetic Bcl2 that demonstrate an increased capacity. Bcl2's effect on induced-hematopoietic differentiation of ES cells does not result from either decreased apoptosis or a reduced number of cells. Rather, Bcl2-enhances hematopoietic differentiation of ES cells by upregulating p27, which results in retardation of the cell cycle at G1/G 0. Thus siRNA silencing of p27 reverts Bcl2's enhancement phenotype in a manner similar to that of Bcl2 "silencing" or expression of a nonphosphorylable Bcl2. In addition to Bcl2's well-described antiapoptotic and cell-cycle retardant effect on somatic cells, Bcl2 may also function to enhance induced hematopoietic cell differentiation of murine ES cells. These findings may have potential relevance for expanding hematopoietic stem/progenitor cell numbers from an ES cell source for stem cell transplantation applications.


Subject(s)
Cell Differentiation/physiology , Embryonic Stem Cells/metabolism , Hematopoietic Stem Cells/metabolism , Proto-Oncogene Proteins/biosynthesis , Up-Regulation/physiology , Animals , Cell Differentiation/drug effects , Cyclin-Dependent Kinase Inhibitor p27/antagonists & inhibitors , Cyclin-Dependent Kinase Inhibitor p27/genetics , Cyclin-Dependent Kinase Inhibitor p27/metabolism , Embryonic Stem Cells/cytology , G1 Phase/drug effects , G1 Phase/physiology , Genes, Dominant , Hematopoietic Stem Cells/cytology , Mice , Mutation , NIH 3T3 Cells , Proto-Oncogene Proteins/antagonists & inhibitors , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins c-bcl-2 , RNA, Small Interfering/genetics , RNA, Small Interfering/pharmacology , Resting Phase, Cell Cycle/drug effects , Resting Phase, Cell Cycle/physiology , Stem Cell Transplantation , Up-Regulation/drug effects
11.
J Biol Chem ; 282(29): 21268-77, 2007 Jul 20.
Article in English | MEDLINE | ID: mdl-17525161

ABSTRACT

Protein kinase Czeta (PKCzeta) is an atypical PKC isoform that plays an important role in supporting cell survival but the mechanism(s) involved is not fully understood. Bax is a major member of the Bcl-2 family that is required for apoptotic cell death. Because Bax is extensively co-expressed with PKCzeta in both small cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC) cells, it is possible that Bax may act as the downstream target of PKCzeta in regulating survival and chemosensitivity of lung cancer cells. Here we discovered that treatment of cells with nicotine not only enhances PKCzeta activity but also results in Bax phosphorylation and prolonged cell survival, which is suppressed by a PKCzeta specific inhibitor (a myristoylated PKCzeta pseudosubstrate peptide). Purified, active PKCzeta directly phosphorylates Bax in vitro. Overexpression of wild type or the constitutively active A119D but not the dominant negative K281W PKCzeta mutant results in Bax phosphorylation at serine 184. PKCzeta co-localizes and interacts with Bax at the BH3 domain. Specific depletion of PKCzeta by RNA interference blocks nicotine-stimulated Bax phosphorylation and enhances apoptotic cell death. Intriguingly, forced expression of wild type or A119D but not K281W PKCzeta mutant results in accumulation of Bax in cytoplasm and prevents Bax from undergoing a conformational change with prolonged cell survival. Purified PKCzeta can directly dissociate Bax from isolated mitochondria of C2-ceramide-treated cells. Thus, PKCzeta may function as a physiological Bax kinase to directly phosphorylate and interact with Bax, which leads to sequestration of Bax in cytoplasm and abrogation of the proapoptotic function of Bax.


Subject(s)
Apoptosis , Protein Kinase C/metabolism , bcl-2-Associated X Protein/metabolism , Animals , Cell Survival , Cytoplasm/metabolism , Humans , Lung Neoplasms/metabolism , Mice , Models, Biological , Mutation , Nicotine/metabolism , Phosphorylation , Protein Structure, Tertiary , RNA Interference
12.
J Biol Chem ; 282(12): 9279-87, 2007 Mar 23.
Article in English | MEDLINE | ID: mdl-17259174

ABSTRACT

Bcl2 has been reported to suppress DNA mismatch repair (MMR) with promotion of mutagenesis, but the mechanism(s) is not fully understood. MutSalpha is the hMSH2-hMSH6 heterodimer that primarily functions to correct mutations that escape the proofreading activity of DNA polymerase. Here we have discovered that Bcl2 potently suppresses MMR in association with decreased MutSalpha activity and increased mutagenesis. Exposure of cells to nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone results in accumulation of Bcl2 in the nucleus, which interacts with hMSH6 but not hMSH2 via its BH4 domain. Deletion of the BH4 domain from Bcl2 abrogates the ability of Bcl2 to interact with hMSH6 and is associated with enhanced MMR efficiency and decreased mutation frequency. Overexpression of Bcl2 reduces formation of the hMSH2-hMSH6 complex in cells, and purified Bcl2 protein directly disrupts the hMSH2-hMSH6 complex and suppresses MMR in vitro. Importantly, depletion of endogenous Bcl2 by RNA interference enhances formation of the hMSH2-hMSH6 complex in association with increased MMR and decreased mutagenesis. Thus, Bcl2 suppression of MMR may occur in a novel mechanism by directly regulating the heterodimeric hMSH2-hMSH6 complex, which potentially contributes to genetic instability and carcinogenesis.


Subject(s)
Base Pair Mismatch , DNA Repair , DNA-Binding Proteins/metabolism , MutS Homolog 2 Protein/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism , Cell Line, Tumor , DNA Damage , Dimerization , Gene Deletion , Gene Silencing , Humans , Mutation , Protein Binding , RNA Interference , Subcellular Fractions
13.
Mol Cell Biol ; 26(12): 4421-34, 2006 Jun.
Article in English | MEDLINE | ID: mdl-16738310

ABSTRACT

p53 not only functions as a transcription factor but also has a direct, apoptogenic role at the mitochondria. We have discovered that DNA damage-induced p53-Bcl2 binding is associated with decreased Bcl2-Bax interaction and increased apoptotic cell death in a mechanism regulated by Bcl2's flexible loop regulatory domain (FLD), since purified p53 protein can disrupt the Bcl2/Bax complex by directly binding to a negative regulatory region of the FLD (amino acids [aa] 32 to 68). Deletion of the negative regulatory region (Delta32-68) abolishes Bcl2-p53 binding and enhances Bcl2's antiapoptotic function. Conversely, removal of a positive regulatory region (aa 69 to 87) of the FLD, which contains the Bcl2 phosphorylation site(s) T69, S70, and S87, enhances Bcl2-p53 binding and significantly abrogates Bcl2's survival activity. The phospho-mimetic T69E/S70E/S87E (EEE) but not the nonphosphorylatable T69A/S70A/S87A (AAA) Bcl2 mutant displays a reduced capacity to bind p53 and potently inhibits p53-induced cytochrome c release from isolated mitochondria. Furthermore, the FLD-only aa32-87 and aa32-68 peptides but not the aa69-87 peptide can directly bind p53 in vitro. p53-induced cytochrome c release occurs through a mechanism involving Bax's integral insertion into the outer mitochondrial membrane. Either DNA damage to cells or expression of p53 selectively targeted to the mitochondria results in Bcl2-p53 binding followed by exposure of Bcl2's BH3 domain in association with inactivation of Bcl2's antiapoptotic function, indicating a conformational change in Bcl2 can occur upon direct ligation of p53. Thus, Bcl2's FLD contains both positive and negative regulatory regions which functionally regulate Bcl2's antiapoptotic activity by affecting Bax or p53 binding.


Subject(s)
Proto-Oncogene Proteins c-bcl-2/chemistry , Proto-Oncogene Proteins c-bcl-2/metabolism , Tumor Suppressor Protein p53/metabolism , Animals , Apoptosis/physiology , Base Sequence , Cell Line , Cell Survival/physiology , Cytochromes c/metabolism , DNA Damage , DNA, Complementary/genetics , Humans , Mice , Mitochondria/metabolism , Mutation , Protein Binding , Protein Structure, Tertiary , Proto-Oncogene Proteins c-bcl-2/genetics , RNA Interference , RNA, Small Interfering/genetics , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , bcl-2-Associated X Protein/metabolism
14.
J Biol Chem ; 281(20): 14446-56, 2006 May 19.
Article in English | MEDLINE | ID: mdl-16554306

ABSTRACT

Bcl2 and c-Myc are two major oncogenic proteins that can functionally promote DNA damage, genetic instability, and tumorigenesis. However, the mechanism(s) remains unclear. Nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) is the most potent carcinogen contained in cigarette smoke that induces cellular DNA damage. Here we found that Bcl2 potently suppresses the repair of NNK-induced abasic sites of DNA lesions in association with increased c-Myc transcriptional activity. The Bcl2 BH4 domain (amino acids 6-31) was found to bind directly to c-Myc MBII domain (amino acids 106-143), and this interaction is required for Bcl2 to enhance c-Myc transcriptional activity and inhibit DNA repair. In addition to mitochondria, Bcl2 is also expressed in the nucleus, where it co-localizes with c-Myc. Expression of nuclear-targeted Bcl2 enhances c-Myc transcriptional activity with suppression of DNA repair but fails to prolong cell survival. Depletion of c-Myc expression from cells overexpressing Bcl2 significantly accelerates the repair of NNK-induced DNA damage, indicating that c-Myc may be essential for the Bcl2 effect on DNA repair. It is known that apurinic/apyrimidinic endonuclease (APE1) plays a crucial role in the repair of abasic sites of DNA lesions. That overexpression of Bcl2 results in up-regulation of c-Myc and down-regulation of APE1 suggests APE1 may function as the downstream target of Bcl2/c-Myc in the DNA repair machinery. Thus, Bcl2, in addition to its survival function, may also suppress DNA repair in a novel mechanism involving c-Myc and APE1, which may lead to an accumulation of DNA damage in living cells, genetic instability, and tumorigenesis.


Subject(s)
DNA Repair , Proto-Oncogene Proteins c-bcl-2/metabolism , Proto-Oncogene Proteins c-myc/metabolism , Transcription, Genetic , Carcinogens , Cell Line, Tumor , Cell Nucleus/metabolism , Comet Assay , DNA Damage , DNA-(Apurinic or Apyrimidinic Site) Lyase/metabolism , Glutathione/metabolism , Humans , Mitochondria/metabolism , Nitrosamines , Up-Regulation
15.
J Biol Chem ; 279(38): 40209-19, 2004 Sep 17.
Article in English | MEDLINE | ID: mdl-15210690

ABSTRACT

Nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) is formed by nitrosation of nicotine and has been identified as the most potent carcinogen contained in cigarette smoke. NNK significantly contributes to smoking-related lung cancer, but the molecular mechanism remains enigmatic. Bcl2 and c-Myc are two major oncogenic proteins that cooperatively promote tumor development. We report here that NNK simultaneously stimulates Bcl2 phosphorylation exclusively at Ser(70) and c-Myc at Thr(58) and Ser(62) through activation of both ERK1/2 and PKCalpha, which is required for NNK-induced survival and proliferation of human lung cancer cells. Treatment of cells with staurosporine or PD98059 blocks both Bcl2 and c-Myc phosphorylation and results in suppression of NNK-induced proliferation. Specific depletion of c-Myc expression by RNA interference retards G(1)/S cell cycle transition and blocks NNK-induced cell proliferation. Phosphorylation of Bcl2 at Ser(70) promotes a direct interaction between Bcl2 and c-Myc in the nucleus and on the outer mitochondrial membrane that significantly enhances the half-life of the c-Myc protein. Thus, NNK-induced functional cooperation of Bcl2 and c-Myc in promoting cell survival and proliferation may occur in a novel mechanism involving their phosphorylation, which may lead to development of human lung cancer and/or chemoresistance.


Subject(s)
Carcinogens/pharmacology , Carcinoma, Small Cell , Lung Neoplasms , Nitrosamines/pharmacology , Proto-Oncogene Proteins c-bcl-2/metabolism , Proto-Oncogene Proteins c-myc/metabolism , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Bungarotoxins/pharmacology , Cell Division/drug effects , Cell Line, Tumor/cytology , Cell Line, Tumor/drug effects , Cell Line, Tumor/metabolism , Cell Nucleus/metabolism , Cell Survival/drug effects , Cisplatin/pharmacology , Enzyme Inhibitors/pharmacology , Flavonoids/pharmacology , Humans , Mitochondria/metabolism , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3 , Mitogen-Activated Protein Kinases/metabolism , Phosphorylation , Protein Kinase C/metabolism , Protein Kinase C-alpha , Proto-Oncogene Proteins c-myc/genetics , RNA, Small Interfering , Receptors, Nicotinic , Signal Transduction/drug effects , Staurosporine/pharmacology , alpha7 Nicotinic Acetylcholine Receptor
16.
J Biol Chem ; 279(22): 23837-44, 2004 May 28.
Article in English | MEDLINE | ID: mdl-15037618

ABSTRACT

Nicotine is an important component in cigarette smoke that can activate the growth-promoting pathways to facilitate the development of lung cancer. However, the intracellular mechanism(s) by which nicotine promotes survival of lung cancer cells remains enigmatic. Bad is a proapoptotic BH3-only member of the Bcl2 family and is expressed in both small cell lung cancer and non-small cell lung cancer cells. Here we report that nicotine potently induces Bad phosphorylation at Ser112, Ser136, and Ser155 in a mechanism involving activation of MAPKs ERK1/2, PI3K/AKT, and PKA in human lung cancer cells. Nicotine-induced multi-site phosphorylation of Bad results in sequestering Bad from mitochondria and subsequently interacting with 14-3-3 in the cytosol. Treatment of cells with PKC inhibitor (staurosporine), MEK-specific inhibitor (PD98059), PI3 kinase inhibitor (LY294002), or PKA inhibitor (H89) blocks the nicotine-induced Bad phosphorylation that is associated with enhanced apoptotic cell death. The fact that beta-adrenergic receptor inhibitor (propranolol) blocks nicotine-induced activation of ERK1/2, AKT, PKA, Bad phosphorylation, and cell survival suggests that nicotine-induced Bad phosphorylation may occur through the upstream beta-adrenergic receptors. The fact that specific knockdown of Bad expression by RNA interference using short interfering RNA enhances cell survival and that nicotine has no additional survival effect on these cells suggests that Bad may act as a required target of nicotine. Thus, nicotine-induced survival may occur in a mechanism through multi-site phosphorylation of Bad, which may lead to development of human lung cancer and/or chemoresistance.


Subject(s)
Apoptosis/drug effects , Carrier Proteins/metabolism , Nicotine/pharmacology , Nicotinic Agonists/pharmacology , Cell Death/drug effects , Cell Line, Tumor , Drug Resistance, Neoplasm , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Phosphorylation/drug effects , Proto-Oncogene Proteins c-bcl-2/metabolism , Signal Transduction/drug effects , bcl-Associated Death Protein
17.
Proc Natl Acad Sci U S A ; 101(1): 153-8, 2004 Jan 06.
Article in English | MEDLINE | ID: mdl-14660795

ABSTRACT

Bcl2 functions to suppress apoptosis and retard cell cycle entry. Single-site phosphorylation at serine 70 (S70) is required for Bcl2's antiapoptotic function, and multisite phosphorylation at threonine 69 (T69), S70, and S87 has been reported to inactivate Bcl2. To address this apparent conflict and identify the regulatory role for Bcl2 phosphorylation in cell death and cell cycle control, a series of serine/threonine (S/T) --> glutamate/alanine (E/A) mutants including T69E/A, S70E/A, S87E/A, T69E/S70A/S87A (EAA), T69A/S70E/S87A (AEA), T69A/S70A/S87E (AAE), T69E/S70E/S87E (EEE), and T69A/S70A/S87A (AAA) was created to mimic or abrogate, respectively, either single-site or multisite phosphorylation. The survival and cell cycle status of cells expressing the phosphomimetic or nonphosphorylatable Bcl2 mutants were compared. Surprisingly, all of the E but not the A Bcl2 mutants potently enhance cell survival after stress and retard G(1)/S cell cycle transition. The EEE Bcl2 mutant is the most potent, indicating a possible cumulative advantage for multisite phosphorylation of Bcl2 in survival and retardation of G(1)/S transition functions. Because the E-containing Bcl2 mutants, but not the A-containing mutants, can more potently block cytochrome c release from mitochondria during apoptotic stress, even at times when steady-state expression levels are similar for all mutants, we conclude that phosphorylation at one or multiple sites within the flexible loop domain of Bcl2 not only stimulates antiapoptotic activity but also can regulate cell cycle entry.


Subject(s)
Apoptosis/physiology , Cell Cycle/physiology , Proto-Oncogene Proteins c-bcl-2/physiology , Amino Acid Substitution , Animals , Apoptosis/drug effects , Binding Sites , Cell Cycle/drug effects , Cell Line , Cell Survival/drug effects , Cell Survival/physiology , Cytochromes c/metabolism , Drug Stability , G1 Phase/physiology , In Vitro Techniques , Interleukin-3/pharmacology , Mice , Mitochondria/metabolism , Mutagenesis, Site-Directed , Paclitaxel/pharmacology , Phosphorylation , Protein Structure, Tertiary , Proto-Oncogene Proteins c-bcl-2/chemistry , Proto-Oncogene Proteins c-bcl-2/genetics , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , S Phase/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...