Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2023 Dec 23.
Article in English | MEDLINE | ID: mdl-37961635

ABSTRACT

As genetic studies continue to identify risk loci that are significantly associated with risk for neuropsychiatric disease, a critical unanswered question is the extent to which diverse mutations--sometimes impacting the same gene-- will require tailored therapeutic strategies. Here we consider this in the context of rare neuropsychiatric disorder-associated copy number variants (2p16.3) resulting in heterozygous deletions in NRXN1, a pre-synaptic cell adhesion protein that serves as a critical synaptic organizer in the brain. Complex patterns of NRXN1 alternative splicing are fundamental to establishing diverse neurocircuitry, vary between the cell types of the brain, and are differentially impacted by unique (non-recurrent) deletions. We contrast the cell-type-specific impact of patient-specific mutations in NRXN1 using human induced pluripotent stem cells, finding that perturbations in NRXN1 splicing result in divergent cell-type-specific synaptic outcomes. Via distinct loss-of-function (LOF) and gain-of-function (GOF) mechanisms, NRXN1+/- deletions cause decreased synaptic activity in glutamatergic neurons, yet increased synaptic activity in GABAergic neurons. Stratification of patients by LOF and GOF mechanisms will facilitate individualized restoration of NRXN1 isoform repertoires; towards this, antisense oligonucleotides knockdown mutant isoform expression and alters synaptic transcriptional signatures, while treatment with ß-estradiol rescues synaptic function in glutamatergic neurons. Given the increasing number of mutations predicted to engender both LOF and GOF mechanisms in brain disease, our findings add nuance to future considerations of precision medicine.

2.
Neuron ; 111(11): 1776-1794.e10, 2023 06 07.
Article in English | MEDLINE | ID: mdl-37028432

ABSTRACT

Light touch sensation begins with activation of low-threshold mechanoreceptor (LTMR) endings in the skin and propagation of their signals to the spinal cord and brainstem. We found that the clustered protocadherin gamma (Pcdhg) gene locus, which encodes 22 cell-surface homophilic binding proteins, is required in somatosensory neurons for normal behavioral reactivity to a range of tactile stimuli. Developmentally, distinct Pcdhg isoforms mediate LTMR synapse formation through neuron-neuron interactions and peripheral axonal branching through neuron-glia interactions. The Pcdhgc3 isoform mediates homophilic interactions between sensory axons and spinal cord neurons to promote synapse formation in vivo and is sufficient to induce postsynaptic specializations in vitro. Moreover, loss of Pcdhgs and somatosensory synaptic inputs to the dorsal horn leads to fewer corticospinal synapses on dorsal horn neurons. These findings reveal essential roles for Pcdhg isoform diversity in somatosensory neuron synapse formation, peripheral axonal branching, and stepwise assembly of central mechanosensory circuitry.


Subject(s)
Sensory Receptor Cells , Spinal Cord , Sensory Receptor Cells/physiology , Spinal Cord/physiology , Cadherins/genetics , Cadherins/metabolism , Synapses , Spinal Cord Dorsal Horn , Protein Isoforms/genetics , Protein Isoforms/metabolism
3.
J Neurosci Methods ; 334: 108548, 2020 Feb 14.
Article in English | MEDLINE | ID: mdl-32065989

ABSTRACT

BACKGROUND: Somatic cell reprogramming is routinely used to generate donor-specific human induced pluripotent stem cells (hiPSCs) to facilitate studies of disease in a human context. The directed differentiation of hiPSCs can generate large quantities of patient-derived cells; however, such methodologies frequently yield heterogeneous populations of neurons and glia that require extended timelines to achieve electrophysiological maturity. More recently, transcription factor-based induction protocols have been show to rapidly generate defined neuronal populations from hiPSCs. NEW METHOD: In a manner similar to our previous adaption of NGN2-glutamatergic neuronal induction from hiPSC-derived neural progenitor cells (NPCs), we now adapt an established protocol of lentiviral overexpression of ASCL1 and DLX2 to hiPSC-NPCs. RESULTS: We demonstrate induction of a robust and highly pure population of functional GABAergic neurons (iGANs). Importantly, we successfully applied this technique to hiPSC-NPCs derived from ten donors across two independent laboratories, finding it to be an efficient and highly reproducible approach to generate induced GABAergic neurons. Our results show that, like hiPSC-iGANs, NPC-iGANs exhibit increased GABAergic marker expression, electrophysiological maturity, and have distinct transcriptional profiles that distinguish them from other cell-types of the brain. Nonetheless, until donor-matched hiPSCs-iGANs and NPC-iGANs are directly compared, we cannot rule out the possibility that subtle differences in patterning or maturity may exist between these populations; one should always control for cell source in all iGAN experiments. CONCLUSIONS: This methodology, relying upon an easily cultured starting population of hiPSC-NPCs, makes possible the generation of large-scale defined co-cultures of induced glutamatergic and GABAergic neurons for hiPSC-based disease models and precision drug screening.

4.
Mol Neuropsychiatry ; 3(2): 73-84, 2017 Nov.
Article in English | MEDLINE | ID: mdl-29230395

ABSTRACT

Given the cognitive and behavioral effects following in utero Δ9-tetrahydrocannabinol (THC) exposure that have been reported in humans and rodents, it is critical to understand the precise consequences of THC on developing human neurons. Here, we utilize excitatory neurons derived from human-induced pluripotent stem cells (hiPSCs), and report that in vitro THC exposure reduced expression of glutamate receptor subunit genes (GRIA1, GRIA2, GRIN2A, and GRIN2B). By expanding these studies across hiPSC-derived neurons from individuals with a variety of genotypes, we believe that a hiPSC-based model will facilitate studies of the interaction of THC exposure and the genetic risk factors underlying neuropsychiatric disease vulnerability.

5.
Brain Res ; 1655: 283-293, 2017 01 15.
Article in English | MEDLINE | ID: mdl-26581337

ABSTRACT

Schizophrenia is a neuropsychological disorder with a strong heritable component; genetic risk for schizophrenia is conferred by both common variants of relatively small effect and rare variants with high penetrance. Genetically engineered mouse models can recapitulate rare variants, displaying some behavioral defects associated with schizophrenia; however, these mouse models cannot recapitulate the full genetic architecture underlying the disorder. Patient-derived human induced pluripotent stem cells (hiPSCs) present an alternative approach for studying rare variants, in the context of all other risk alleles. Genome editing technologies, such as CRISPR-Cas9, enable the generation of isogenic hiPSC lines with which to examine the functional contribution of single variants within any genetic background. Studies of these rare variants using hiPSCs have the potential to identify commonly disrupted pathways in schizophrenia and allow for the identification of new therapeutic targets. This article is part of a Special Issue entitled SI:StemsCellsinPsychiatry.


Subject(s)
DNA Copy Number Variations , Induced Pluripotent Stem Cells/physiology , Mental Disorders/genetics , Mental Disorders/physiopathology , Animals , Humans
SELECTION OF CITATIONS
SEARCH DETAIL