Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 8: 15305, 2017 05 17.
Article in English | MEDLINE | ID: mdl-28513587

ABSTRACT

Well-controlled quantum devices with their increasing system size face a new roadblock hindering further development of quantum technologies. The effort of quantum tomography-the reconstruction of states and processes of a quantum device-scales unfavourably: state-of-the-art systems can no longer be characterized. Quantum compressed sensing mitigates this problem by reconstructing states from incomplete data. Here we present an experimental implementation of compressed tomography of a seven-qubit system-a topological colour code prepared in a trapped ion architecture. We are in the highly incomplete-127 Pauli basis measurement settings-and highly noisy-100 repetitions each-regime. Originally, compressed sensing was advocated for states with few non-zero eigenvalues. We argue that low-rank estimates are appropriate in general since statistical noise enables reliable reconstruction of only the leading eigenvectors. The remaining eigenvectors behave consistently with a random-matrix model that carries no information about the true state.

2.
Phys Rev Lett ; 102(19): 190501, 2009 May 15.
Article in English | MEDLINE | ID: mdl-19518930

ABSTRACT

It is often argued that entanglement is at the root of the speedup for quantum compared to classical computation, and that one needs a sufficient amount of entanglement for this speedup to be manifest. In measurement-based quantum computing, the need for a highly entangled initial state is particularly obvious. Defying this intuition, we show that quantum states can be too entangled to be useful for the purpose of computation, in that high values of the geometric measure of entanglement preclude states from offering a universal quantum computational speedup. We prove that this phenomenon occurs for a dramatic majority of all states: the fraction of useful n-qubit pure states is less than exp(-n;{2}). This work highlights a new aspect of the role entanglement plays for quantum computational speedups.

SELECTION OF CITATIONS
SEARCH DETAIL
...