Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
Add more filters










Publication year range
1.
PLoS Biol ; 22(4): e3002582, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38683874

ABSTRACT

Muscarinic acetylcholine receptors are prototypical G protein-coupled receptors (GPCRs), members of a large family of 7 transmembrane receptors mediating a wide variety of extracellular signals. We show here, in cultured cells and in a murine model, that the carboxyl terminal fragment of the muscarinic M2 receptor, comprising the transmembrane regions 6 and 7 (M2tail), is expressed by virtue of an internal ribosome entry site localized in the third intracellular loop. Single-cell imaging and import in isolated yeast mitochondria reveals that M2tail, whose expression is up-regulated in cells undergoing integrated stress response, does not follow the normal route to the plasma membrane, but is almost exclusively sorted to the mitochondria inner membrane: here, it controls oxygen consumption, cell proliferation, and the formation of reactive oxygen species (ROS) by reducing oxidative phosphorylation. Crispr/Cas9 editing of the key methionine where cap-independent translation begins in human-induced pluripotent stem cells (hiPSCs), reveals the physiological role of this process in influencing cell proliferation and oxygen consumption at the endogenous level. The expression of the C-terminal domain of a GPCR, capable of regulating mitochondrial function, constitutes a hitherto unknown mechanism notably unrelated to its canonical signaling function as a GPCR at the plasma membrane. This work thus highlights a potential novel mechanism that cells may use for controlling their metabolism under variable environmental conditions, notably as a negative regulator of cell respiration.


Subject(s)
Cell Respiration , Mitochondria , Receptor, Muscarinic M2 , Animals , Humans , Mice , Cell Proliferation , HEK293 Cells , Induced Pluripotent Stem Cells/metabolism , Mitochondria/metabolism , Oxidative Phosphorylation , Oxygen Consumption , Reactive Oxygen Species/metabolism , Receptor, Muscarinic M2/metabolism , Receptor, Muscarinic M2/genetics , Stress, Physiological
2.
Cells ; 13(6)2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38534381

ABSTRACT

The identification of new therapeutic targets and the development of innovative therapeutic approaches are the most important challenges for osteosarcoma treatment. In fact, despite being relatively rare, recurrence and metastatic potential, particularly to the lungs, make osteosarcoma a deadly form of cancer. In fact, although current treatments, including surgery and chemotherapy, have improved survival rates, the disease's recurrence and metastasis are still unresolved complications. Insights for analyzing the still unclear molecular mechanisms of osteosarcoma development, and for finding new therapeutic targets, may arise from the study of post-translational protein modifications. Indeed, they can influence and alter protein structure, stability and function, and cellular interactions. Among all the post-translational modifications, ubiquitin-like modifications (ubiquitination, deubiquitination, SUMOylation, and NEDDylation), as well as glycosylation, are the most important for regulating protein stability, which is frequently altered in cancers including osteosarcoma. This review summarizes the relevance of ubiquitin-like modifications and glycosylation in osteosarcoma progression, providing an overview of protein stability regulation, as well as highlighting the molecular mediators of these processes in the context of osteosarcoma and their possible targeting for much-needed novel therapy.


Subject(s)
Bone Neoplasms , Osteosarcoma , Humans , Glycosylation , Ubiquitin , Osteosarcoma/pathology , Bone Neoplasms/pathology , Protein Stability
3.
Int J Mol Sci ; 24(24)2023 Dec 06.
Article in English | MEDLINE | ID: mdl-38139010

ABSTRACT

Ubiquitination is a post-translational modification that targets specific proteins on their lysine residues. Depending on the type of ubiquitination, this modification ultimately regulates the stability or degradation of the targeted proteins. Ubiquitination is mediated by three different classes of enzymes: the E1 ubiquitin-activating enzymes, the E2 ubiquitin-conjugating enzymes and, most importantly, the E3 ubiquitin ligases. E3 ligases are responsible for the final step of the ubiquitin cascade, interacting directly with the target proteins. E3 ligases can also be involved in DNA repair, cell cycle regulation and response to stress; alteration in their levels can be involved in oncogenic transformation and cancer progression. Of all the six hundred E3 ligases of the human genome, only three of them are specific to the mitochondrion: MARCH5, RNF185 and MUL1. Their alterations (that reflect on the alteration of the mitochondria functions) can be related to cancer progression, as underlined by the increasing research performed in recent years on these three mitochondrial enzymes. This review will focus on the function and mechanisms of the mitochondrial E3 ubiquitin ligases, as well as their important targets, in cancer development and progression, also highlighting their potential use for cancer therapy.


Subject(s)
Neoplasms , Ubiquitin-Protein Ligases , Humans , Ubiquitin-Protein Ligases/metabolism , Ubiquitination , Ubiquitin/metabolism , Proteins/metabolism , Neoplasms/drug therapy , Neoplasms/metabolism , Mitochondria/metabolism , Ubiquitin-Conjugating Enzymes/metabolism , Mitochondrial Proteins/metabolism
4.
Pharmaceuticals (Basel) ; 16(3)2023 Feb 22.
Article in English | MEDLINE | ID: mdl-36986440

ABSTRACT

(1) Background: Obesity, a complex metabolic disease resulting from an imbalance between food consumption and energy expenditure, leads to an increase in adipocytes and chronic inflammatory conditions. The aim of this paper was to synthesize a small series of carvacrol derivatives (CD1-3) that are able to reduce both adipogenesis and the inflammatory status often associated with the progression of the obesity disease. (2) Methods: The synthesis of CD1-3 was performed using classical procedures in a solution phase. Biological studies were performed on three cell lines: 3T3-L1, WJ-MSCs, and THP-1. The anti-adipogenic properties of CD1-3 were evaluated using western blotting and densitometric analysis by assessing the expression of obesity-related proteins, such as ChREBP. The anti-inflammatory effect was estimated by measuring the reduction in TNF-α expression in CD1-3-treated THP-1 cells. (3) Results: CD1-3-obtained through a direct linkage between the carboxylic moiety of anti-inflammatory drugs (Ibuprofen, Flurbiprofen, and Naproxen) and the hydroxyl group of carvacrol-have an inhibitory effect on the accumulation of lipids in both 3T3-L1 and WJ-MSCs cell cultures and an anti-inflammatory effect by reducing TNF- α levels in THP-1 cells. (4) Conclusions: Considering the physicochemical properties, stability, and biological data, the CD3 derivative-obtained by a direct linkage between carvacrol and naproxen-resulted in the best candidate, displaying anti-obesity and anti-inflammatory effects in vitro.

5.
Int J Mol Sci ; 23(23)2022 Nov 25.
Article in English | MEDLINE | ID: mdl-36499098

ABSTRACT

Opposing dose-dependent effects of curcumin (Cur) have been documented in Retinal Pigment Epithelium (RPE); therefore, to shed the light on the mechanisms of action is crucial for ophthalmic applications. On this basis we explored new insights about the dose-dependent mechanisms triggered by Cur in human retinal pigment epithelial cells (ARPE-19). Three concentrations (0.01 mM; 0.05 mM; 0.1 mM) of Cur were tested, followed by morphological, molecular, and functional analysis of the cells. Cur 0.01 mM promotes a significant increase in cell proliferation, not affecting cell cycle progression and apoptosis; by contrast, Cur 0.05 mM and 0.1 mM block cellular proliferation and trigger S-phase cell cycle arrest without inducing apoptosis. The observation of neuronal-like morphological changes in Cur 0.05 mM and 0.1 mM were not associated with neuronal differentiation, as observed by the quantification of Neurofilament-200 and by the analysis of voltage-dependent currents by patch clamp. Evaluation of autophagic markers LC3BII and p62 revealed significant modulations, suggesting an important activation of autophagy in ARPE-19 cells treated with Cur 0.05 mM and Cur 0.1 mM; conversely, Cur 0.01 mM did not affect autophagy. Altogether, our findings show new dose-dependent mechanisms of action of Cur that suggest a wide therapeutic application in ocular diseases with different pathogenesis (i.e., proliferative vitreoretinopathy or Age-Related Macular Degeneration).


Subject(s)
Curcumin , Humans , Curcumin/pharmacology , Curcumin/metabolism , Retinal Pigment Epithelium/metabolism , Autophagy , Apoptosis , Cell Proliferation
6.
Biomedicines ; 10(11)2022 Nov 15.
Article in English | MEDLINE | ID: mdl-36428503

ABSTRACT

The mammalian target of rapamycin (mTOR) signaling plays a critical role in cell homeostasis, growth and survival. Here, we investigated the localization of the main mTOR signaling proteins in the organ of Corti of normal-hearing and deafened guinea pigs, as well as their possible modulation by exogenously administered brain-derived neurotrophic factor (BDNF) in deafened guinea pigs. Animals were ototoxically deafened by systemic administration of kanamycin and furosemide, and one week later, the right cochleas were treated with gelatin sponge soaked in rhBDNF, while the left cochleas were used as negative controls. Twenty-four hours after treatment, animals were euthanized, and the cochleas were processed for subsequent analysis. Through immunofluorescence, we demonstrated the localization of AKT, pAKT, mTOR, pmTOR and PTEN proteins throughout the cochlea of guinea pigs for the first time, with a higher expression in supporting cells. Moreover, an increase in mTOR immunostaining was observed in BDNF-treated cochleas by means of fluorescence intensity compared to the other groups. Conversely, Western blot analysis showed no significant differences in the protein levels between groups, probably due to dilution of proteins in the neighboring tissues of the organ of Corti. Altogether, our data indicate that mTOR signaling proteins are expressed by the organ of Corti (with a major role for supporting cells) and that the modulation of mTOR may be a protective mechanism triggered by BDNF in the degenerating organ of Corti.

7.
Antioxidants (Basel) ; 11(6)2022 Jun 09.
Article in English | MEDLINE | ID: mdl-35740031

ABSTRACT

In this study, we investigated whether cerium oxide nanoparticles (CeO2-NPs), a promising antioxidant nanomaterial, may contrast retinal vascular alterations induced by oxidative damage in vitro and in vivo. For the in vivo experiments, the light damage (LD) animal model of Age-Related Macular Degeneration (AMD) was used and the CeO2-NPs were intravitreally injected. CeO2-NPs significantly decreased vascular endothelial growth factor (VEGF) protein levels, reduced neovascularization in the deep retinal plexus, and inhibited choroidal sprouting into the photoreceptor layer. The in vitro experiments were performed on human retinal pigment epithelial (ARPE-19) cells challenged with H2O2; we demonstrated that CeO2-NPs reverted H2O2-induced oxidative stress-dependent effects on this cell model. We further investigated the RPE-endothelial cells interaction under oxidative stress conditions in the presence or absence of CeO2-NPs through two experimental paradigms: (i) treatment of human umbilical vein endothelial cells (HUVECs) with conditioned media from ARPE-19 cells, and (ii) coculture of ARPE-19 and HUVECs. In both experimental conditions, CeO2-NPs were able to revert the detrimental effect of H2O2 on angiogenesis in vitro by realigning the level of tubule formation to that of the control. Altogether, our results indicate, for the first time, that CeO2-NPs can counteract retinal neovascularization and may be a new therapeutic strategy for the treatment of wet AMD.

8.
Eur J Cell Biol ; 101(3): 151225, 2022.
Article in English | MEDLINE | ID: mdl-35453093

ABSTRACT

Metabolic alterations have been observed in many cancer types. The deregulated metabolism has thus become an emerging hallmark of the disease, where the metabolism is frequently rewired to aerobic glycolysis. This has led to the concept of "metabolic reprogramming", which has therefore been extensively studied. Over the years, it has been characterized the enhancement of aerobic glycolysis, where key mutations in some of the enzymes of the TCA cycle, and the increased glucose uptake, are used by cancer cells to achieve a "metabolic phenotype" useful to gain a proliferation advantage. Many studies have highlighted in detail the signaling pathways and the molecular mechanisms responsible for the glycolytic switch. However, glycolysis is not the only metabolic process that cancer cells rely on. Oxidative Phosphorylation (OXPHOS), gluconeogenesis or the beta-oxidation of fatty acids (FAO) may be involved in the development and progression of several tumors. In some cases, these metabolisms are even more crucial than aerobic glycolysis for the tumor survival. This review will focus on the contribution of these alterations of metabolism to the development and survival of cancers. We will also analyze the molecular mechanisms by which the balance between these metabolic processes may be regulated, as well as some of the therapeutical approaches that can derive from their study.


Subject(s)
Neoplasms , Oxidative Phosphorylation , Energy Metabolism , Fatty Acids/metabolism , Glycolysis , Humans , Mitochondria/metabolism , Neoplasms/pathology
9.
J Ocul Pharmacol Ther ; 38(1): 56-65, 2022.
Article in English | MEDLINE | ID: mdl-34889660

ABSTRACT

Purpose: Recent studies have shown the presence of SARS-CoV-2 entry factors on the ocular surface, identifying the eye as an additional entry route for the virus. Moreover, the coexpression of angiotensin-converting enzyme 2 (ACE2) with other SARS-CoV-2 entry factors [transmembrane protease serine 2 (TMPRSS2), transmembrane protease serine 4 (TMPRSS4), and dipeptidyl peptidase-4 (DPP4)] facilitates the virus infection. Methods: Here, we performed a study over 10 adult corneal and limbal tissues from human donors, both male and female between 58 and 85 years of age. Some of the main virus entry factors were analyzed and their expression was quantified and correlated with the age and sex of the donors through western blot. The receptors' localization was investigated through immunofluorescence. Results: Immunofluorescence confirmed the localization of ACE2 and TMPRSS2 on the ocular surface and showed, for the first time, the localization of TMPRSS4 and DPP4 in limbal and corneal epithelial superficial cells. The quantitative analysis showed that the expression of SARS-CoV-2 entry factors on corneal and limbal cells is likely to be modulated in an age-dependent manner, in agreement with the increased susceptibility to COVID-19 in the elderly. Moreover, we found a relationship between the expression of TMPRSS proteases with the activation state of limbal cells in 80-year-old donors. Conclusion: This study provides information on the expression of SARS-CoV-2 entry factors on the ocular surface of 10 adult human donors and is a first observation of a possible age-dependent modulation on corneal and limbal tissues. Our data pave the way to further investigate the susceptibility to the infection through the ocular surface in the elderly.


Subject(s)
Conjunctiva/metabolism , Conjunctiva/virology , Cornea/metabolism , Cornea/virology , SARS-CoV-2/metabolism , Virus Internalization , Aged , Aged, 80 and over , Angiotensin-Converting Enzyme 2/metabolism , Female , Gene Expression Regulation, Viral/physiology , Humans , Male , Middle Aged , Serine Endopeptidases/metabolism
11.
Int J Mol Sci ; 22(7)2021 Mar 24.
Article in English | MEDLINE | ID: mdl-33805128

ABSTRACT

Chronic heart failure (CHF) is a disease with important clinical and socio-economic ramifications. Malnutrition and severe alteration of the protein components of the body (protein disarrangements), common conditions in CHF patients, are independent correlates of heart dysfunction, disease progression, and mortality. Autophagy, a prominent occurrence in the heart of patients with advanced CHF, is a self-digestive process that prolongs myocardial cell lifespan by the removal of cytosolic components, such as aging organelles and proteins, and recycles the constituent elements for new protein synthesis. However, in specific conditions, excessive activation of autophagy can lead to the destruction of molecules and organelles essential to cell survival, ultimately leading to organ failure and patient death. In this review, we aim to describe the experimental and clinical evidence supporting a pathophysiological role of nutrition and autophagy in the progression of CHF. The understanding of the mechanisms underlying the interplay between nutrition and autophagy may have important clinical implications by providing molecular targets for innovative therapeutic strategies in CHF patients.


Subject(s)
Autophagy , Heart Failure/physiopathology , Heart/physiology , Malnutrition/physiopathology , TOR Serine-Threonine Kinases/metabolism , Animals , Cell Survival , Chronic Disease , Cytosol/metabolism , Disease Progression , Heart Failure/complications , Humans , Malnutrition/complications , Metabolism , Mice , Muscle, Skeletal/metabolism , Myocardial Contraction , Myocardium/metabolism , Myocytes, Cardiac/metabolism , Rats , Risk Assessment
12.
Cells ; 9(7)2020 07 04.
Article in English | MEDLINE | ID: mdl-32635502

ABSTRACT

Retinal pigment epithelium (RPE) dysfunction and degeneration underlie the development of age-related macular degeneration (AMD), which is the leading cause of blindness worldwide. In this study, we investigated whether cerium oxide nanoparticles (CeO2-NPs or nanoceria), which are anti-oxidant agents with auto-regenerative properties, are able to preserve the RPE. On ARPE-19 cells, we found that CeO2-NPs promoted cell viability against H2O2-induced cellular damage. For the in vivo studies, we used a rat model of acute light damage (LD), which mimics many features of AMD. CeO2-NPs intravitreally injected three days before LD prevented RPE cell death and degeneration and nanoceria labelled with fluorescein were found localized in the cytoplasm of RPE cells. CeO2-NPs inhibited epithelial-mesenchymal transition of RPE cells and modulated autophagy by the down-regulation of LC3B-II and p62. Moreover, the treatment inhibited nuclear localization of LC3B. Taken together, our study demonstrates that CeO2-NPs represent an eligible candidate to counteract RPE degeneration and, therefore, a powerful therapy for AMD.


Subject(s)
Autophagy/drug effects , Cerium/therapeutic use , Macular Degeneration/prevention & control , Metal Nanoparticles/chemistry , Metal Nanoparticles/therapeutic use , Retinal Pigment Epithelium/cytology , Retinal Pigment Epithelium/drug effects , Animals , Blotting, Western , Cell Line , Cell Proliferation/drug effects , Humans , Hydrogen Peroxide/toxicity , In Situ Nick-End Labeling , Macular Degeneration/metabolism , Oxidative Stress/drug effects , Rats , Rats, Sprague-Dawley , Retinal Pigment Epithelium/metabolism
13.
Front Cell Dev Biol ; 8: 607483, 2020.
Article in English | MEDLINE | ID: mdl-33409282

ABSTRACT

Fibrosis is a chronic and progressive disorder characterized by excessive deposition of extracellular matrix, which leads to scarring and loss of function of the affected organ or tissue. Indeed, the fibrotic process affects a variety of organs and tissues, with specific molecular background. However, two common hallmarks are shared: the crucial role of the transforming growth factor-beta (TGF-ß) and the involvement of the inflammation process, that is essential for initiating the fibrotic degeneration. TGF-ß in particular but also other cytokines regulate the most common molecular mechanism at the basis of fibrosis, the Epithelial-to-Mesenchymal Transition (EMT). EMT has been extensively studied, but not yet fully explored as a possible therapeutic target for fibrosis. A deeper understanding of the crosstalk between fibrosis and EMT may represent an opportunity for the development of a broadly effective anti-fibrotic therapy. Here we report the evidences of the relationship between EMT and multi-organ fibrosis, and the possible therapeutic approaches that may be developed by exploiting this relationship.

15.
Nutrients ; 11(6)2019 Jun 18.
Article in English | MEDLINE | ID: mdl-31216646

ABSTRACT

An adequate intake of essential (EAA) and non-essential amino acids (NEAA) is crucial to preserve cell integrity and whole-body metabolism. EAA introduced with diet may be insufficient to meet the organismal needs, especially under increased physiological requirements or in pathological conditions, and may condition lifespan. We therefore examined the effects of iso-caloric and providing the same nitrogenous content diets, any diet containing different stoichiometric blends of EAA/NEAA, on mouse lifespan. Three groups of just-weaned male Balb/C mice were fed exclusively with special diets with varying EAA/NEAA ratios, ranging from 100%/0% to 0%/100%. Three additional groups of mice were fed with different diets, two based on casein as alimentary proteins, one providing the said protein, one reproducing the amino acidic composition of casein, and the third one, the control group, was fed by a standard laboratory diet. Mouse lifespan was inversely correlated with the percentage of NEAA introduced with each diet. Either limiting EAA, or exceeding NEAA, induced rapid and permanent structural modifications on muscle and adipose tissue, independently of caloric intake. These changes significantly affected food and water intake, body weight, and lifespan. Dietary intake of varying EAA/NEAA ratios induced changes in several organs and profoundly influenced murine lifespan. The balanced content of EAA provided by dietary proteins should be considered as the preferable means for "optimal" nutrition and the elevated or unbalanced intake of NEAA provided by food proteins may negatively affect the health and lifespan of mice.


Subject(s)
Amino Acids/administration & dosage , Animal Feed/analysis , Diet/methods , Dietary Proteins/administration & dosage , Longevity , Animals , Caseins/administration & dosage , Energy Intake , Male , Mice , Mice, Inbred BALB C
16.
COPD ; 16(1): 89-92, 2019 02.
Article in English | MEDLINE | ID: mdl-31056947

ABSTRACT

The mammalian target of rapamycin (mTOR) signalling pathway regulates fundamental metabolic processes such as inflammation, autophagy and apoptosis, all of which influence cell fate. Recent experimental data suggest that mTOR signalling is involved in many diseases, including lung diseases, but with contrasting data. Overexpression of mTOR and its signalling proteins have been linked to lung cell senescence and development of emphysema, pulmonary hypertension and inflammation. On the other hand, mTOR inhibitors, as rapamycin and/or its derivatives, restore corticosteroid sensitivity in peripheral blood mononuclear cells from chronic obstructive pulmonary disease (COPD) patients, and overexpression of mTOR suppresses cigarette smoke-induced inflammation and emphysema, suggesting that induction of mTOR expression/activity might be useful to treat COPD. This apparent discrepancy is due to complex and heterogenic enzymatic pathway of mTOR. Translation of pre-clinical positive data on the use of mTOR inhibitors to COPD therapy needs a more in-depth knowledge of mTOR signalling.


Subject(s)
Pulmonary Disease, Chronic Obstructive/drug therapy , Signal Transduction , TOR Serine-Threonine Kinases/antagonists & inhibitors , TOR Serine-Threonine Kinases/metabolism , Animals , Autophagy , Cellular Senescence , Humans , Pulmonary Disease, Chronic Obstructive/metabolism
17.
J Vis Exp ; (146)2019 04 01.
Article in English | MEDLINE | ID: mdl-30985753

ABSTRACT

The thromboxane A2 receptor (TBXA2R) gene is a member of the G-protein coupled superfamily with seven-transmembrane regions. It is involved in atherogenesis progression, ischemia, and myocardial infarction. Here we present a methodology of patient genotyping to investigate the post-transcriptional role of the C924T polymorphism (rs4523) situated at the 3' region of the TBXA2 receptor gene. This method relies on DNA extraction from whole blood, polymerase chain reaction (PCR) amplification of the TBXA2 gene portion containing the C924T mutation, and identification of wild type and/or mutant genotypes using a restriction digest analysis, specifically a restriction fragment length polymorphism (RFLP) on agarose gel. In addition, the results were confirmed by sequencing the TBXA2R gene. This method features several potential advantages, such as high efficiency and the rapid identification of the C924T polymorphism by PCR and restriction enzyme analysis. This approach allows a predictive study for plaque formation and atherosclerosis progression by analyzing patient genotypes for the TBXA2R C924T polymorphism. Application of this method has the potential to identify subjects who are more susceptible to atherothrombotic processes, in particular subjects in a high-risk, aspirin-treated group.


Subject(s)
Polymerase Chain Reaction/methods , Polymorphism, Single Nucleotide/genetics , Receptors, Thromboxane A2, Prostaglandin H2/genetics , Base Sequence , Genotype , Humans , Polymorphism, Restriction Fragment Length/genetics , Restriction Mapping
18.
Toxicol Sci ; 169(1): 209-223, 2019 05 01.
Article in English | MEDLINE | ID: mdl-30698772

ABSTRACT

Tebuconazole and Econazole are triazole and imidazole fungicides currently used worldwide. Although their reproductive toxicity in mammals has been described, their effect on male reproductive systems has been poorly investigated. As humans may be exposed to different azole compounds simultaneously, the combinational in vitro toxicity of Tebuconazole and Econazole (MIX) in mouse Sertoli TM4 cells was investigated. This study demonstrates that Tebuconazole (40 µM) and Econazole (20 µM) act synergistically in mediating decrease of mitochondrial membrane potential (ΔΨm) and changes in mitochondrial morphology. These events were associated with ATP depletion, cell cycle arrest, and sequential activation of autophagy and apoptosis. Remarkable differences on other parameters such as AMP/ATP ratio and adenylate energy charge were observed. Pharmacological inhibition of autophagy by bafilomycin A1 leads to enhanced MIX-induced apoptosis suggesting an adaptive cytoprotective function for MIX-modulated autophagy. Finally, a possible role of AMPK/ULK1 axis in mediating adaptive signalling cascades in response to energy stress was hypothesized. Consistently, ULK1 Ser 555 phosphorylation occurred in response to AMPK (Thr 172) activation. In conclusion, Tebuconazole and Econazole combination, at concentrations relevant for dermal and clinical exposure, induces a severe mitochondrial stress in SCs. Consequently, a prolonged exposure may affect the ability of the cells to re-establish homeostasis and trigger apoptosis.


Subject(s)
Antifungal Agents/toxicity , Apoptosis/drug effects , Autophagy/drug effects , Econazole/toxicity , Energy Metabolism/drug effects , Fungicides, Industrial/toxicity , Mitochondria/drug effects , Sertoli Cells/drug effects , Stress, Physiological/drug effects , Triazoles/toxicity , AMP-Activated Protein Kinases/metabolism , Animals , Autophagy-Related Protein-1 Homolog/metabolism , Cell Cycle Checkpoints/drug effects , Cell Line , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Synergism , Male , Membrane Potential, Mitochondrial/drug effects , Mice , Mitochondria/metabolism , Mitochondria/pathology , Sertoli Cells/metabolism , Sertoli Cells/pathology , Signal Transduction
19.
Int J Mol Sci ; 19(11)2018 Nov 17.
Article in English | MEDLINE | ID: mdl-30453654

ABSTRACT

Energy production is the main task of the cancer cell metabolism because the costs of duplicating are enormous. Although energy is derived in cells by dismantling the carbon-to-carbon bonds of any macronutrient, cancer nutritional needs for energetic purposes have been studied primarily as being dependent on glycolysis. Since the end of the last century, the awareness of the dependence of cancer metabolism on amino acids not only for protein synthesis but also to match energy needs has grown. The roles of specific amino acids such as glutamine, glycine and serine have been explored in different experimental conditions and reviewed. Moreover, epidemiological evidence has revealed that some amino acids used as a supplement for therapeutic reasons, particularly the branched-chain ones, may reduce the incidence of liver cancer and a specific molecular mechanism has been proposed as functional to their protective action. By contrast and puzzling clinicians, the metabolomic signature of some pathologies connected to an increased risk of cancer, such as prolonged hyperinsulinemia in insulin-resistant patients, is identified by elevated plasma levels of the same branched-chain amino acids. Most recently, certain formulations of amino acids, deeply different from the amino acid compositions normally present in foods, have shown the power to master cancer cells epigenetically, slowing growth or driving cancer cells to apoptotic death, while being both beneficial for normal cell function and the animal's health and lifespan. In this review, we will analyze and try to disentangle some of the many knots dealing with the complexities of amino acid biology and links to cancer metabolism.


Subject(s)
Amino Acids/metabolism , Diet , Neoplasms/pathology , Animals , Apoptosis , Autophagy , Humans , Proteasome Endopeptidase Complex/metabolism
20.
PLoS One ; 13(11): e0206894, 2018.
Article in English | MEDLINE | ID: mdl-30418986

ABSTRACT

OBJECTIVE: Obesity is the result of white adipose tissue accumulation where excess of food energy is stored to form triglycerides. De novo lipogenesis (DNL) is the continuous process of new fat production and is driven by the transcription factor ChREBP. During adipogenesis, white adipocytes change their morphology and the entire cell volume is occupied by one large lipid droplet. Recent studies have implicated an essential role of autophagy in adipogenic differentiation, cytoplasmic remodelling and mitochondria reorganization. The phenolic monoterpenoid carvacrol (2-methyl-5-[1-methylethyl]phenol), produced by numerous aromatic plants, has been shown to reduce lipid accumulation in murine 3T3-L1 cells during adipogenic differentiation by modulating genes associated with adipogenesis and inflammation. Therefore, the aim of this study was to evaluate whether carvacrol could affect autophagy and ChREBP expression during adipogenic differentiation. METHODS: The study was carried on by using the murine 3T3-L1 and the human WJ-MSCs (Wharton's jelly-derived mesenchymal stem cells) cell lines. Cells undergoing adipogenic differentiation were untreated or treated with carvacrol. Adipogenic differentiation was assessed by analyzing cellular lipid accumulation with Oil-Red O staining and by ultrastructural examination with TEM. Autophagy was evaluated by western immunoblotting of autophagy markers LC3B and p62/SQSTM and by ultrastructural examination of autophagic bodies. Autophagic flux was evaluated by using autophagy inhibitor cloroquine (CQ). ChREBP expression levels was assessed by both western blotting and immunoelectron microscopy and ChREBP activity by analysis of adipogenic target genes expression. RESULTS: We found that carvacrol reduced adipogenic differentiation of about 40% and 30% in, respectively, 3T3-L1 and in WJ-MSCs cells. The effect of carvacrol on adipogenic differentiation correlated with both reduction of autophagy and reduction of ChREBP expression. CONCLUSION: The results support the notion that carvacrol, through its effect on autophagy (essential for adipocyte maturation) and on ChREBP activity, could be used as a valuable adjuvant to reduce adipogenic differentiation.


Subject(s)
Adipogenesis/drug effects , Autophagy/drug effects , Cell Differentiation/drug effects , Monoterpenes/pharmacology , Nuclear Proteins/metabolism , Obesity/drug therapy , Transcription Factors/metabolism , 3T3-L1 Cells , Adipocytes/drug effects , Adipocytes/physiology , Adipogenesis/physiology , Animals , Autophagy/physiology , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors , Cell Line , Cymenes , Drug Evaluation, Preclinical , Gene Expression Regulation/drug effects , Humans , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/physiology , Mice , Monoterpenes/therapeutic use , Obesity/etiology , Primary Cell Culture , Wharton Jelly/cytology
SELECTION OF CITATIONS
SEARCH DETAIL
...