Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
BMJ Glob Health ; 9(3)2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38519096

ABSTRACT

BACKGROUND: Indoor residual spraying (IRS) using neonicotinoid-based insecticides (clothianidin and combined clothianidin with deltamethrin) was deployed in two previously unsprayed districts of Côte d'Ivoire in 2020 and 2021 to complement standard pyrethroid insecticide-treated nets. This retrospective observational study uses health facility register data to assess the impact of IRS on clinically reported malaria case incidence. METHODS: Health facility data were abstracted from consultation registers for the period September 2018 to April 2022 in two IRS districts and two control districts that did not receive IRS. Malaria cases reported by community health workers (CHWs) were obtained from district reports and District Health Information Systems 2. Facilities missing complete data were excluded. Controlled interrupted time series models were used to estimate the effect of IRS on monthly all-ages population-adjusted confirmed malaria cases and cases averted by IRS. Models controlled for transmission season, precipitation, vegetation, temperature, proportion of cases reported by CHWs, proportion of tested out of suspected cases and non-malaria outpatient visits. RESULTS: An estimated 10 988 (95% CI 5694 to 18 188) malaria cases were averted in IRS districts the year following the 2020 IRS campaign, representing a 15.9% reduction compared with if IRS had not been deployed. Case incidence in IRS districts dropped by 27.7% (incidence rate ratio (IRR) 0.723, 95% CI 0.592 to 0.885) the month after the campaign. In the 8 months after the 2021 campaign, 14 170 (95% CI 13 133 to 15 025) estimated cases were averted, a 24.7% reduction, and incidence in IRS districts dropped by 37.9% (IRR 0.621, 95% CI 0.462 to 0.835) immediately after IRS. Case incidence in control districts did not change following IRS either year (p>0.05) and the difference in incidence level change between IRS and control districts was significant both years (p<0.05). CONCLUSION: Deployment of clothianidin-based IRS was associated with a reduction in malaria case rates in two districts of Côte d'Ivoire following IRS deployment in 2020 and 2021.


Subject(s)
Guanidines , Insecticides , Malaria , Thiazoles , Humans , Incidence , Mosquito Control , Cote d'Ivoire/epidemiology , Neonicotinoids , Malaria/epidemiology , Malaria/prevention & control , Health Facilities
2.
Malar J ; 22(1): 14, 2023 Jan 12.
Article in English | MEDLINE | ID: mdl-36635720

ABSTRACT

BACKGROUND: Entomological surveillance provides critical information on vectors for appropriate malaria vector control and strategic decision-making. The widely documented insecticide resistance of malaria vectors in Côte d'Ivoire requires that any vector control intervention deployment be driven by entomological data to optimize its effectiveness and appropriate resource allocations. To achieve this goal, this study documents the results of monthly vector surveillance and insecticide susceptibility tests conducted in 2019 and a review of all previous entomological monitoring data used to guide vector control decision making. Furthermore, susceptibility to pirimiphos-methyl and clothianidin was assessed in addition to chlorfenapyr and pyrethroids (intensity and piperonyl butoxide (PBO) synergism) tests previously reported. Vector bionomic data were conducted monthly in four sites (Sakassou, Béoumi, Dabakala and Nassian) that were selected based on their reported high malaria incidence. Adult mosquitoes were collected using human landing catches (HLCs), pyrethrum spray catches (PSCs), and human-baited CDC light traps to assess vector density, behaviour, species composition and sporozoite infectivity. RESULTS: Pirimiphos-methyl and clothianidin susceptibility was observed in 8 and 10 sites, respectively, while previous data reported chlorfenapyr (200 µg/bottle) susceptibility in 13 of the sites, high pyrethroid resistance intensity and increased mortality with PBO pre-exposure at all 17 tested sites. Anopheles gambiae sensu lato was the predominant malaria vector collected in all four bionomic sites. Vector density was relatively higher in Sakassou throughout the year with mean biting rates of 278.2 bites per person per night (b/p/n) compared to Béoumi, Dabakala and Nassian (mean of 48.5, 81.4 and 26.6 b/p/n, respectively). The mean entomological inoculation rate (EIR) was 4.44 infective bites per person per night (ib/p/n) in Sakassou, 0.34 ib/p/n in Beoumi, 1.17 ib/p/n in Dabakala and 1.02 ib/p/n in Nassian. The highest EIRs were recorded in October in Béoumi (1.71 ib/p/n) and Nassian (3.22 ib/p/n), in July in Dabakala (4.46 ib/p/n) and in May in Sakassou (15.6 ib/p/n). CONCLUSION: Based on all results and data review, the National Malaria Control Programme developed and implemented a stratified insecticide-treated net (ITN) mass distribution in 2021 considering new generation ITNs. These results also supported the selection of clothianidin-based products and an optimal spraying time for the first indoor residual spraying (IRS) campaign in Sakassou and Nassian in 2020.


Subject(s)
Anopheles , Insecticides , Malaria , Humans , Animals , Insecticides/pharmacology , Malaria/epidemiology , Mosquito Control/methods , Cote d'Ivoire/epidemiology , Mosquito Vectors , Insecticide Resistance
4.
Malar J ; 21(1): 385, 2022 Dec 16.
Article in English | MEDLINE | ID: mdl-36522727

ABSTRACT

BACKGROUND: Mass distribution of insecticide-treated nets (ITNs) is the principal malaria vector control strategy adopted by Niger. To better inform on the most appropriate ITN to distribute, the National Malaria Control Programme (NMCP) of Niger and its partners, conducted insecticide resistance monitoring in selected sites across the country. METHODS: The susceptibility of Anopheles gambiae sensu lato (s.l.) to chlorfenapyr and pyrethroid insecticides was investigated in a total of sixteen sites in 2019 and 2020, using 2-5-day-old adults reared from wild collected larvae per site. The susceptibility status, pyrethroid resistance intensity at 5 and 10 times the diagnostic concentrations, and piperonyl butoxide (PBO) synergism with diagnostic concentrations of deltamethrin, permethrin and alpha-cypermethrin were assessed using WHO bioassays. Two doses (100 and 200 µg/bottle) of chlorfenapyr were tested using the CDC bottle assay method. Species composition and allele frequencies for knock-down resistance (kdr-L1014F and L1014S) and acetylcholinesterase (ace-1 G119S) mutations were further characterized using polymerase chain reaction (PCR). RESULTS: High resistance intensity to all pyrethroids tested was observed in all sites except for alpha-cypermethrin in Gaya and Tessaoua and permethrin in Gaya in 2019 recording moderate resistance intensity. Similarly, Balleyara, Keita and Tillabery yielded moderate resistance intensity for alpha-cypermethrin and deltamethrin, and Niamey V low resistance intensity against deltamethrin and permethrin in 2020. Pre-exposure to PBO substantially increased susceptibility with average increases in mortality between 0 and 70% for tested pyrethroids. Susceptibility to chlorfenapyr (100 µg/bottle) was recorded in all sites except in Tessaoua and Magaria where susceptibility was recorded at the dose of 200 µg/bottle. Anopheles coluzzii was the predominant malaria vector species in most of the sites followed by An. gambiae sensu stricto (s.s.) and Anopheles arabiensis. The kdr-L1014S allele, investigated for the first time, was detected in the country. Both kdr-L1014F (frequencies [0.46-0.81]) and L1014S (frequencies [0.41-0.87]) were present in all sites while the ace-1 G119S was between 0.08 and 0.20. CONCLUSION: The data collected will guide the NMCP in making evidence-based decisions to better adapt vector control strategies and insecticide resistance management in Niger, starting with mass distribution of new generation ITNs such as interceptor G2 and PBO ITNs.


Subject(s)
Anopheles , Insecticides , Malaria , Pyrethrins , Animals , Insecticide Resistance/genetics , Anopheles/genetics , Permethrin/pharmacology , Acetylcholinesterase , Niger , Mosquito Vectors/genetics , Malaria/prevention & control , Pyrethrins/pharmacology , Insecticides/pharmacology , Africa, Western
5.
Malar J ; 21(1): 238, 2022 Aug 20.
Article in English | MEDLINE | ID: mdl-35987650

ABSTRACT

BACKGROUND: Pyrethroid resistance observed in populations of malaria vectors is widespread in Ethiopia and could potentially compromise the effectiveness of insecticide-based malaria vector control interventions. In this study, the impact of combining indoor residual spraying (IRS) and insecticide-treated nets (ITNs) on mosquito behaviour and mortality was evaluated using experimental huts. METHODS: A Latin Square Design was employed using six experimental huts to collect entomological data. Human volunteers slept in huts with different types of nets (pyrethroid-only net, PBO net, and untreated net) either with or without IRS (Actellic 300CS). The hut with no IRS and an untreated net served as a negative control. The study was conducted for a total of 54 nights. Both alive and dead mosquitoes were collected from inside nets, in the central rooms and verandah the following morning. Data were analysed using Stata/SE 14.0 software package (College Station, TX, USA). RESULTS: The personal protection rate of huts with PermaNet® 2.0 alone and PermaNet® 3.0 alone was 33.3% and 50%, respectively. The mean killing effect of huts with PermaNet® 2.0 alone and PermaNet® 3.0 alone was 2% and 49%, respectively. Huts with PermaNet® 2.0 alone and PermaNet® 3.0 alone demonstrated significantly higher excito-repellency than the control hut. However, mosquito mortality in the hut with IRS + untreated net, hut with IRS + PermaNet® 2.0 and hut with IRS + PermaNet® 3.0 were not significantly different from each other (p > 0.05). Additionally, pre-exposure of both the susceptible Anopheles arabiensis laboratory strain and wild Anopheles gambiae sensu lato to PBO in the cone bioassay tests of Actellic 300CS sprayed surfaces did not reduce mosquito mortality when compared to mortality without pre-exposure to PBO. CONCLUSION: Mosquito mortality rates from the huts with IRS alone were similar to mosquito mortality rates from the huts with the combination of vector control intervention tools (IRS + ITNs) and mosquito mortality rates from huts with PBO nets alone were significantly higher than huts with pyrethroid-only nets. The findings of this study help inform studies to be conducted under field condition for decision-making for future selection of cost-effective vector control intervention tools.


Subject(s)
Anopheles , Insecticide-Treated Bednets , Insecticides , Malaria , Pyrethrins , Animals , Ethiopia , Humans , Insecticide Resistance , Insecticides/pharmacology , Malaria/prevention & control , Mosquito Control , Mosquito Vectors , Organothiophosphorus Compounds , Pyrethrins/pharmacology
6.
Malar J ; 19(1): 454, 2020 Dec 09.
Article in English | MEDLINE | ID: mdl-33298071

ABSTRACT

BACKGROUND: Pyrethroid-treated mosquito nets are currently the mainstay of vector control in Côte d'Ivoire. However, resistance to pyrethroids has been reported across the country, limiting options for insecticide resistance management due to the paucity of alternative insecticides. Two types of insecticide-treated nets (ITNs), ITNs with pyrethroids and the synergist piperonyl butoxide (PBO), and Interceptor®G2 nets, a net treated with a combination of chlorfenapyr and alpha-cypermethrin, are believed to help in the control of pyrethroid-resistant mosquitoes. METHODS: The susceptibility of Anopheles gambiae sensu lato (s.l.) to pyrethroid insecticides with and without pre-exposure to PBO as well as to chlorfenapyr was investigated in fifteen sites across the country. Susceptibility tests were conducted on 2- to 4-day old adult female An. gambiae s.l. reared from larval collections. The resistance status, intensity, and effects of PBO on mortality after exposure to different concentrations of deltamethrin, permethrin and alpha-cypermethrin were determined using WHO susceptibility test kits. In the absence of a WHO-recommended standard protocol for chlorfenapyr, two interim doses (100 and 200 µg/bottle) were used to test the susceptibility of mosquitoes using the CDC bottle assay method. RESULTS: Pre-exposure to PBO did not result in full restoration of susceptibility to any of the three pyrethroids for the An. gambiae s.l. populations from any of the sites surveyed. However, PBO pre-exposure did increase mortality for all three pyrethroids, particularly deltamethrin (from 4.4 to 48.9%). Anopheles gambiae s.l. from only one site (Bettie) were susceptible to chlorfenapyr at the dose of 100 µg active ingredient (a.i.)/bottle. At the dose of 200 µg (a.i.)/bottle, susceptibility was only recorded in 10 of the 15 sites. CONCLUSION: Low mosquito mortality was found for pyrethroids alone, and while PBO increased mortality, it did not restore full susceptibility. The vector was not fully susceptible to chlorfenapyr in one third of the sites tested. However, vector susceptibility to chlorfenapyr seems to be considerably higher than for pyrethroids alone or with PBO. These data should be used cautiously when making ITN procurement decisions, noting that bioassays are conducted in controlled conditions and may not fully represent field efficacy where the host-seeking behaviours, which include free-flying activity are known to enhance pro-insecticide chlorfenapyr intoxication to mosquitoes.


Subject(s)
Anopheles/drug effects , Insecticide Resistance/drug effects , Insecticides/pharmacology , Piperonyl Butoxide/pharmacology , Pyrethrins/pharmacology , Animals , Cote d'Ivoire , Drug Synergism , Female , Insecticide-Treated Bednets , Mosquito Control , Mosquito Vectors/drug effects , Pesticide Synergists/pharmacology
7.
Parasit Vectors ; 13(1): 239, 2020 May 08.
Article in English | MEDLINE | ID: mdl-32384907

ABSTRACT

BACKGROUND: Millions of pyrethroid LLINs have been distributed in Mali during the past 20 years which, along with agricultural use, has increased the selection pressure on malaria vector populations. This study investigated pyrethroid resistance intensity and susceptible status of malaria vectors to alternative insecticides to guide choice of insecticides for LLINs and IRS for effective control of malaria vectors. METHODS: For 3 years between 2016 and 2018, susceptibility testing was conducted annually in 14-16 sites covering southern and central Mali. Anopheles gambiae (s.l.) were collected from larval sites and adult mosquitoes exposed in WHO tube tests to diagnostic doses of bendiocarb (0.1%) and pirimiphos-methyl (0.25%). Resistance intensity tests were conducted using CDC bottle bioassays (2016-2017) and WHO tube tests (2018) at 1×, 2×, 5×, and 10× the diagnostic concentration of permethrin, deltamethrin and alpha-cypermethrin. WHO tube tests were conducted with pre-exposure to the synergist PBO followed by permethrin or deltamethrin. Chlorfenapyr was tested in CDC bottle bioassays at 100 µg active ingredient per bottle and clothianidin at 2% in WHO tube tests. PCR was performed to identify species within the An. gambiae complex. RESULTS: In all sites An. gambiae (s.l.) showed high intensity resistance to permethrin and deltamethrin in CDC bottle bioassay tests in 2016 and 2017. In 2018, the WHO intensity tests resulted in survivors at all sites for permethrin, deltamethrin and alpha-cypermethrin when tested at 10× the diagnostic dose. Across all sites mean mortality was 33.7% with permethrin (0.75%) compared with 71.8% when pre-exposed to PBO (4%), representing a 2.13-fold increase in mortality. A similar trend was recorded for deltamethrin. There was susceptibility to pirimiphos-methyl, chlorfenapyr and clothianidin in all surveyed sites, including current IRS sites in Mopti Region. An. coluzzii was the primary species in 4 of 6 regions. CONCLUSIONS: Widespread high intensity pyrethroid resistance was recorded during 2016-2018 and is likely to compromise the effectiveness of pyrethroid LLINs in Mali. PBO or chlorfenapyr LLINs should provide improved control of An. gambiae (s.l.). Clothianidin and pirimiphos-methyl insecticides are currently being used for IRS as part of a rotation strategy based on susceptibility being confirmed in this study.


Subject(s)
Anopheles , Insecticide Resistance , Insecticides , Piperonyl Butoxide , Pyrethrins , Animals , Biological Assay , Female , Insecticide-Treated Bednets , Larva , Malaria/prevention & control , Mali , Mosquito Control , Mosquito Vectors
SELECTION OF CITATIONS
SEARCH DETAIL
...