Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Expert Opin Pharmacother ; 25(4): 359-370, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38512115

ABSTRACT

INTRODUCTION: The small molecule and oral selective and reversible Janus kinase (JAK) inhibitor upadacitinib has been approved for the treatment of moderate to severe active Crohn's disease (CD) in adult patients since April 2023 by EMA/FDA. AREAS COVERED: The approval is based on the two induction studies a maintenance study showing that upadacitinib induction and maintenance therapy was superior to placebo. The approval of upadacitinib in CD expands the therapeutic armamentarium for the management of inflammatory bowel diseases (IBD). Upadacitinib is the first and only JAK inhibitor approved in patients with CD and provides a novel mechanism of action and the first advanced oral treatment option for patients with CD. Upadacitinib is approved for the treatment of other immunologically mediated disorders, including ulcerative colitis, rheumatoid arthritis, psoriasis arthritis, axial spondylarthritis, ankylosing spondylitis, and atopic dermatitis. Treatment of atopic dermatitis has been approved from the age of 12 years. EXPERT OPINION: Upadacitinib may cause relevant changes of our current treatment algorithms for Crohn's disease. Further real-world studies and head-to-head comparisons are needed to position upadacitinib in our current treatment algorithms for CD.


Subject(s)
Crohn Disease , Heterocyclic Compounds, 3-Ring , Janus Kinase Inhibitors , Humans , Crohn Disease/drug therapy , Janus Kinase Inhibitors/therapeutic use , Heterocyclic Compounds, 3-Ring/therapeutic use , Adult , Severity of Illness Index , Drug Approval
2.
Adv Sci (Weinh) ; 11(15): e2307237, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38350720

ABSTRACT

Various disorders are accompanied by histamine-independent itching, which is often resistant to the currently available therapies. Here, it is reported that the pharmacological activation of Slack (Kcnt1, KNa1.1), a potassium channel highly expressed in itch-sensitive sensory neurons, has therapeutic potential for the treatment of itching. Based on the Slack-activating antipsychotic drug, loxapine, a series of new derivatives with improved pharmacodynamic and pharmacokinetic profiles is designed that enables to validate Slack as a pharmacological target in vivo. One of these new Slack activators, compound 6, exhibits negligible dopamine D2 and D3 receptor binding, unlike loxapine. Notably, compound 6 displays potent on-target antipruritic activity in multiple mouse models of acute histamine-independent and chronic itch without motor side effects. These properties make compound 6 a lead molecule for the development of new antipruritic therapies targeting Slack.


Subject(s)
Potassium Channels , Pruritus , Animals , Mice , Antipruritics/therapeutic use , Histamine/metabolism , Loxapine/therapeutic use , Potassium Channels/metabolism , Pruritus/drug therapy , Pruritus/metabolism
3.
Anesthesiology ; 136(5): 802-822, 2022 05 01.
Article in English | MEDLINE | ID: mdl-35303056

ABSTRACT

BACKGROUND: Slick, a sodium-activated potassium channel, has been recently identified in somatosensory pathways, but its functional role is poorly understood. The authors of this study hypothesized that Slick is involved in processing sensations of pain and itch. METHODS: Immunostaining, in situ hybridization, Western blot, and real-time quantitative reverse transcription polymerase chain reaction were used to investigate the expression of Slick in dorsal root ganglia and the spinal cord. Mice lacking Slick globally (Slick-/-) or conditionally in neurons of the spinal dorsal horn (Lbx1-Slick-/-) were assessed in behavioral models. RESULTS: The authors found Slick to be enriched in nociceptive Aδ-fibers and in populations of interneurons in the spinal dorsal horn. Slick-/- mice, but not Lbx1-Slick-/- mice, showed enhanced responses to noxious heat in the hot plate and tail-immersion tests. Both Slick-/- and Lbx1-Slick-/- mice demonstrated prolonged paw licking after capsaicin injection (mean ± SD, 45.6 ± 30.1 s [95% CI, 19.8 to 71.4]; and 13.1 ± 16.1 s [95% CI, 1.8 to 28.0]; P = 0.006 [Slick-/- {n = 8} and wild-type {n = 7}, respectively]), which was paralleled by increased phosphorylation of the neuronal activity marker extracellular signal-regulated kinase in the spinal cord. In the spinal dorsal horn, Slick is colocalized with somatostatin receptor 2 (SSTR2), and intrathecal preadministration of the SSTR2 antagonist CYN-154806 prevented increased capsaicin-induced licking in Slick-/- and Lbx1-Slick-/- mice. Moreover, scratching after intrathecal delivery of the somatostatin analog octreotide was considerably reduced in Slick-/- and Lbx1-Slick-/- mice (Slick-/- [n = 8]: 6.1 ± 6.7 bouts [95% CI, 0.6 to 11.7]; wild-type [n =8]: 47.4 ± 51.1 bouts [95% CI, 4.8 to 90.2]; P = 0.039). CONCLUSIONS: Slick expressed in a subset of sensory neurons modulates heat-induced pain, while Slick expressed in spinal cord interneurons inhibits capsaicin-induced pain but facilitates somatostatin-induced itch.


Subject(s)
Capsaicin , Posterior Horn Cells , Animals , Capsaicin/adverse effects , Capsaicin/metabolism , Ganglia, Spinal/metabolism , Mice , Pain , Posterior Horn Cells/metabolism , Potassium Channels , Pruritus/chemically induced , Sensory Receptor Cells/metabolism , Sodium Channels , Somatostatin/adverse effects , Somatostatin/metabolism , Spinal Cord/metabolism
4.
Int J Mol Sci ; 22(1)2021 Jan 02.
Article in English | MEDLINE | ID: mdl-33401689

ABSTRACT

The sodium-activated potassium channel Slack (KNa1.1, Slo2.2, or Kcnt1) is highly expressed in populations of sensory neurons, where it mediates the sodium-activated potassium current (IKNa) and modulates neuronal activity. Previous studies suggest that Slack is involved in the processing of neuropathic pain. However, mechanisms underlying the regulation of Slack activity in this context are poorly understood. Using whole-cell patch-clamp recordings we found that Slack-mediated IKNa in sensory neurons of mice is reduced after peripheral nerve injury, thereby contributing to neuropathic pain hypersensitivity. Interestingly, Slack is closely associated with ATP-sensitive P2X3 receptors in a population of sensory neurons. In vitro experiments revealed that Slack-mediated IKNa may be bidirectionally modulated in response to P2X3 activation. Moreover, mice lacking Slack show altered nocifensive responses to P2X3 stimulation. Our study identifies P2X3/Slack signaling as a mechanism contributing to hypersensitivity after peripheral nerve injury and proposes a potential novel strategy for treatment of neuropathic pain.


Subject(s)
Adenosine Triphosphate/analogs & derivatives , Calcium/pharmacology , Nerve Tissue Proteins/metabolism , Neuralgia/metabolism , Potassium Channels, Sodium-Activated/metabolism , Receptors, Purinergic P2X3/metabolism , Sensory Receptor Cells/physiology , Adenosine Triphosphate/pharmacology , Animals , Behavior Rating Scale , Ganglia, Spinal/drug effects , Ganglia, Spinal/physiology , Mice , Mice, Inbred C57BL , Mice, Knockout , Nerve Tissue Proteins/genetics , Patch-Clamp Techniques , Peripheral Nerves/pathology , Potassium Channels/metabolism , Potassium Channels/physiology , Potassium Channels, Sodium-Activated/genetics , Receptors, Purinergic P2X3/physiology , Sensory Receptor Cells/drug effects , Sensory Receptor Cells/metabolism , Signal Transduction/drug effects , Signal Transduction/genetics , Signal Transduction/physiology
5.
J Med Chem ; 63(20): 11498-11521, 2020 10 22.
Article in English | MEDLINE | ID: mdl-33044073

ABSTRACT

Inhibition of multiple enzymes of the arachidonic acid cascade leads to synergistic anti-inflammatory effects. Merging of 5-lipoxygenase (5-LOX) and soluble epoxide hydrolase (sEH) pharmacophores led to the discovery of a dual 5-LOX/sEH inhibitor, which was subsequently optimized in terms of potency toward both targets and metabolic stability. The optimized lead structure displayed cellular activity in human polymorphonuclear leukocytes, oral bioavailability, and target engagement in vivo and demonstrated profound anti-inflammatory and anti-fibrotic efficiency in a kidney injury model caused by unilateral ureteral obstruction in mice. These results pave the way for investigating the therapeutic potential of dual 5-LOX/sEH inhibitors in other inflammation- and fibrosis-related disease models.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/chemical synthesis , Arachidonate 5-Lipoxygenase/metabolism , Drug Design , Epoxide Hydrolases/antagonists & inhibitors , Lipoxygenase Inhibitors/chemical synthesis , Animals , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Arachidonate 5-Lipoxygenase/genetics , Cells, Cultured , Epoxide Hydrolases/genetics , Humans , Lipoxygenase Inhibitors/chemistry , Lipoxygenase Inhibitors/pharmacology , Microsomes, Liver/drug effects , Microsomes, Liver/enzymology , Molecular Structure , Neutrophils/drug effects , Neutrophils/enzymology , Protein Binding , Rats , Structure-Activity Relationship
6.
Neuropharmacology ; 171: 108087, 2020 07.
Article in English | MEDLINE | ID: mdl-32272140

ABSTRACT

Cyclic nucleotide-gated (CNG) channels, which are directly activated by cAMP and cGMP, have long been known to play a key role in retinal and olfactory signal transduction. Emerging evidence indicates that CNG channels are also involved in signaling pathways important for pain processing. Here, we found that the expression of the channel subunits CNGA2, CNGA3, CNGA4 and CNGB1 in dorsal root ganglia, and of CNGA2 in the spinal cord, is transiently altered after peripheral nerve injury in mice. Specifically, we show using in situ hybridization and quantitative real-time RT-PCR that CNG channels containing the CNGB1b subunit are localized to populations of sensory neurons and predominantly excitatory interneurons in the spinal dorsal horn. In CNGB1 knockout (CNGB1-/-) mice, neuropathic pain behavior is considerably attenuated whereas inflammatory pain behavior is normal. Finally, we provide evidence to support CNGB1 as a downstream mediator of cAMP signaling in pain pathways. Altogether, our data suggest that CNGB1-positive CNG channels specifically contribute to neuropathic pain processing after peripheral nerve injury.


Subject(s)
Cyclic AMP , Cyclic Nucleotide-Gated Cation Channels/genetics , Nerve Tissue Proteins/genetics , Neuralgia/psychology , Pain/chemically induced , Pain/psychology , Animals , Cyclic Nucleotide-Gated Cation Channels/biosynthesis , Ganglia, Spinal/metabolism , Ganglia, Spinal/pathology , Inflammation/chemically induced , Inflammation/pathology , Injections, Spinal , Mice, Inbred C57BL , Mice, Knockout , Neuralgia/pathology , Pain/pathology , Postural Balance/drug effects , Signal Transduction/drug effects , Spinal Cord Injuries/metabolism , Spinal Cord Injuries/pathology
7.
J Med Chem ; 61(13): 5758-5764, 2018 07 12.
Article in English | MEDLINE | ID: mdl-29878767

ABSTRACT

Multitarget design offers access to bioactive small molecules with potentially superior efficacy and safety. Particularly multifactorial chronic inflammatory diseases demand multiple pharmacological interventions for stable treatment. By minor structural changes, we have developed a close analogue of the cysteinyl-leukotriene receptor antagonist zafirlukast that simultaneously inhibits soluble epoxide hydrolase and activates peroxisome proliferator-activated receptor γ. The triple modulator exhibits robust anti-inflammatory activity in vivo and highlights the therapeutic potential of designed multitarget agents.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Drug Design , Polypharmacology , Tosyl Compounds/pharmacology , 3T3 Cells , Animals , Anti-Inflammatory Agents, Non-Steroidal/metabolism , Catalytic Domain , Epoxide Hydrolases/chemistry , Epoxide Hydrolases/metabolism , Hep G2 Cells , Humans , Indoles , Mice , Molecular Docking Simulation , PPAR gamma/chemistry , PPAR gamma/metabolism , Phenylcarbamates , Sulfonamides , Tosyl Compounds/metabolism
8.
Neuropharmacology ; 125: 386-395, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28823609

ABSTRACT

Intermediate conductance calcium-activated potassium channels (KCa3.1) have been recently implicated in pain processing. However, the functional role and localization of KCa3.1 in the nociceptive system are largely unknown. We here characterized the behavior of mice lacking KCa3.1 (KCa3.1-/-) in various pain models and analyzed the expression pattern of KCa3.1 in dorsal root ganglia (DRG) and the spinal cord. KCa3.1-/- mice demonstrated normal behavioral responses in models of acute nociceptive, persistent inflammatory, and persistent neuropathic pain. However, their behavioral responses to noxious chemical stimuli such as formalin and capsaicin were increased. Accordingly, formalin-induced nociceptive behavior was increased in wild-type mice after administration of the KCa3.1 inhibitor TRAM-34. In situ hybridization experiments detected KCa3.1 in most DRG satellite glial cells, in a minority of DRG neurons, and in ependymal cells lining the central canal of the spinal cord. Together, our data point to a specific inhibitory role of KCa3.1 for the processing of noxious chemical stimuli.


Subject(s)
Ganglia, Spinal/metabolism , Intermediate-Conductance Calcium-Activated Potassium Channels/metabolism , Neuralgia/metabolism , Nociceptive Pain/metabolism , Animals , Calcitonin Gene-Related Peptide/metabolism , Cells, Cultured , Ependyma/drug effects , Ependyma/metabolism , Ependyma/pathology , Female , Ganglia, Spinal/drug effects , Ganglia, Spinal/pathology , Inflammation/metabolism , Inflammation/pathology , Intermediate-Conductance Calcium-Activated Potassium Channels/antagonists & inhibitors , Intermediate-Conductance Calcium-Activated Potassium Channels/deficiency , Intermediate-Conductance Calcium-Activated Potassium Channels/genetics , Male , Mice, Inbred C57BL , Mice, Knockout , Neuralgia/pathology , Neuroglia/drug effects , Neuroglia/metabolism , Neuroglia/pathology , Neurons/drug effects , Neurons/metabolism , Neurons/pathology , Nociceptive Pain/pathology , Pain Threshold/drug effects , Pain Threshold/physiology , Potassium Channel Blockers/pharmacology , Pyrazoles/pharmacology , Sciatic Nerve/injuries , Sensory System Agents , Spinal Cord/drug effects , Spinal Cord/metabolism , Spinal Cord/pathology
9.
Pain ; 158(7): 1354-1365, 2017 07.
Article in English | MEDLINE | ID: mdl-28394828

ABSTRACT

Chronic pain is accompanied by production of reactive oxygen species (ROS) in various cells that are important for nociceptive processing. Recent data indicate that ROS can trigger specific redox-dependent signaling processes, but the molecular targets of ROS signaling in the nociceptive system remain largely elusive. Here, we performed a proteome screen for pain-dependent redox regulation using an OxICAT approach, thereby identifying the small GTPase Rab7 as a redox-modified target during inflammatory pain in mice. Prevention of Rab7 oxidation by replacement of the redox-sensing thiols modulates its GTPase activity. Immunofluorescence studies revealed Rab7 expression to be enriched in central terminals of sensory neurons. Knockout mice lacking Rab7 in sensory neurons showed normal responses to noxious thermal and mechanical stimuli; however, their pain behavior during inflammatory pain and in response to ROS donors was reduced. The data suggest that redox-dependent changes in Rab7 activity modulate inflammatory pain sensitivity.


Subject(s)
Ganglia, Spinal/metabolism , Inflammation/metabolism , Pain/metabolism , Spinal Cord/metabolism , rab GTP-Binding Proteins/metabolism , Animals , Mice , Mice, Knockout , Proteomics , Reactive Oxygen Species/metabolism , Sensory Receptor Cells/metabolism , Signal Transduction/physiology , rab7 GTP-Binding Proteins
SELECTION OF CITATIONS
SEARCH DETAIL
...