Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 60
Filter
Add more filters










Publication year range
1.
Ecol Lett ; 26(11): 1887-1897, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37671723

ABSTRACT

Species, through their traits, influence how ecosystems simultaneously sustain multiple functions. However, it is unclear how trait diversity sustains the multiple contributions biodiversity makes to people. Freshwater fisheries nourish hundreds of millions of people globally, but overharvesting and river fragmentation are increasingly affecting catches. We analyse how loss of nutritional trait diversity in consumed fish portfolios affects the simultaneous provisioning of six essential dietary nutrients using household data from the Amazon and Tonlé Sap, two of Earth's most productive and diverse freshwater fisheries. We find that fish portfolios with high trait diversity meet higher thresholds of required daily intakes for a greater variety of nutrients with less fish biomass. This beneficial biodiversity effect is driven by low redundancy in species nutrient content profiles. Our findings imply that sustaining the dietary contributions fish make to people given declining biodiversity could require more biomass and ultimately exacerbate fishing pressure in already-stressed ecosystems.


Subject(s)
Ecosystem , Fisheries , Humans , Animals , Biomass , Biodiversity , Fresh Water , Nutrients , Fishes
2.
Ecology ; 104(4): e3713, 2023 04.
Article in English | MEDLINE | ID: mdl-35476708

ABSTRACT

The Neotropical region hosts 4225 freshwater fish species, ranking first among the world's most diverse regions for freshwater fishes. Our NEOTROPICAL FRESHWATER FISHES data set is the first to produce a large-scale Neotropical freshwater fish inventory, covering the entire Neotropical region from Mexico and the Caribbean in the north to the southern limits in Argentina, Paraguay, Chile, and Uruguay. We compiled 185,787 distribution records, with unique georeferenced coordinates, for the 4225 species, represented by occurrence and abundance data. The number of species for the most numerous orders are as follows: Characiformes (1289), Siluriformes (1384), Cichliformes (354), Cyprinodontiformes (245), and Gymnotiformes (135). The most recorded species was the characid Astyanax fasciatus (4696 records). We registered 116,802 distribution records for native species, compared to 1802 distribution records for nonnative species. The main aim of the NEOTROPICAL FRESHWATER FISHES data set was to make these occurrence and abundance data accessible for international researchers to develop ecological and macroecological studies, from local to regional scales, with focal fish species, families, or orders. We anticipate that the NEOTROPICAL FRESHWATER FISHES data set will be valuable for studies on a wide range of ecological processes, such as trophic cascades, fishery pressure, the effects of habitat loss and fragmentation, and the impacts of species invasion and climate change. There are no copyright restrictions on the data, and please cite this data paper when using the data in publications.


Subject(s)
Fishes , Fresh Water , Animals , Ecosystem , Mexico , Caribbean Region , Biodiversity
4.
Proc Biol Sci ; 289(1976): 20220726, 2022 06 08.
Article in English | MEDLINE | ID: mdl-35673861

ABSTRACT

Inland fisheries feed greater than 150 million people globally, yet their status is rarely assessed due to their socio-ecological complexity and pervasive lack of data. Here, we leverage an unprecedented landings time series from the Amazon, Earth's largest river basin, together with theoretical food web models to examine (i) taxonomic and trait-based signatures of exploitation in inland fish landings and (ii) implications of changing biodiversity for fisheries resilience. In both landings time series and theory, we find that multi-species exploitation of diverse inland fisheries results in a hump-shaped landings evenness curve. Along this trajectory, abundant and large species are sequentially replaced with faster growing and smaller species. Further theoretical analysis indicates that harvests can be maintained for a period of time but that continued biodiversity depletion reduces the pool of compensating species and consequently diminishes fisheries resilience. Critically, higher fisheries biodiversity can delay fishery collapse. Although existing landings data provide an incomplete snapshot of long-term dynamics, our results suggest that multi-species exploitation is affecting freshwater biodiversity and eroding fisheries resilience in the Amazon. More broadly, we conclude that trends in landings evenness could characterize multi-species fisheries development and aid in assessing their sustainability.


Subject(s)
Fisheries , Rivers , Animals , Biodiversity , Conservation of Natural Resources , Ecosystem , Fishes , Humans
5.
Commun Biol ; 5(1): 420, 2022 05 05.
Article in English | MEDLINE | ID: mdl-35513491

ABSTRACT

The growing threat of abrupt and irreversible changes to the functioning of freshwater ecosystems compels robust measures of tipping point thresholds. To determine benthic cyanobacteria regime shifts in a potable water supply system in the tropical Andes, we conducted a whole ecosystem-scale experiment in which we systematically diverted 20 to 90% of streamflow and measured ecological responses. Benthic cyanobacteria greatly increased with a 60% flow reduction and this tipping point was related to water temperature and nitrate concentration increases, both known to boost algal productivity. We supplemented our experiment with a regional survey collecting > 1450 flow-benthic algal measurements at streams varying in water abstraction levels. We confirmed the tipping point flow value, albeit at a slightly lower threshold (40-50%). A global literature review broadly confirmed our results with a mean tipping point at 58% of flow reduction. Our study provides robust in situ demonstrations of regime shift thresholds in running waters with potentially strong implications for environmental flows management.


Subject(s)
Cyanobacteria , Ecosystem , Rivers , Water
6.
Science ; 375(6582): 753-760, 2022 02 18.
Article in English | MEDLINE | ID: mdl-35175810

ABSTRACT

Proposed hydropower dams at more than 350 sites throughout the Amazon require strategic evaluation of trade-offs between the numerous ecosystem services provided by Earth's largest and most biodiverse river basin. These services are spatially variable, hence collective impacts of newly built dams depend strongly on their configuration. We use multiobjective optimization to identify portfolios of sites that simultaneously minimize impacts on river flow, river connectivity, sediment transport, fish diversity, and greenhouse gas emissions while achieving energy production goals. We find that uncoordinated, dam-by-dam hydropower expansion has resulted in forgone ecosystem service benefits. Minimizing further damage from hydropower development requires considering diverse environmental impacts across the entire basin, as well as cooperation among Amazonian nations. Our findings offer a transferable model for the evaluation of hydropower expansion in transboundary basins.

7.
Oecologia ; 197(2): 485-500, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34480229

ABSTRACT

Historically, anthropogenic fixed nitrogen has been purposely increased to benefit food production and global development. One consequence of this increase has been to raise concentrations of nitrogen in aquatic ecosystems. To evaluate whether nitrogen pollution promotes changes in the estimates of niche space of fish communities, we examined 16 sites along a Brazilian river basin highly impacted by anthropogenic activities, especially discharge of domestic and industrial sewage from a region with more than 5 million inhabitants. We analysed the carbon (δ13C) and nitrogen (δ15N) isotope ratios of fish species and both autochthonous (periphyton) and allochthonous (course and fine particulate organic matter) basal food resources. To estimate the magnitude of nitrogen pollution, we measured the nitrate and ammonium concentrations at each site. Sampling was conducted in the dry and wet seasons to evaluate the influence of seasonality. Nitrogen pollution generally increased estimates of niche space, and seasonality influenced only the niche estimates of fish communities from polluted sites. In addition, isotopic analyses of nitrogen polluted sites yielded unrealistic estimates of trophic positioning (detritivores at the top of the food web). We conclude that changes in niche space estimates reflect both alterations in baseline isotopic values and differential trophic behaviour among fishes. Our study suggests that under conditions of high pollution, other factors appear to influence isotopic estimates of niche, such as isotopically distinct sources that have not been sampled, and/or differences in δ15N turnover rates between fish tissue and basal resources, creating isotopic baselines that are challenging to interpret.


Subject(s)
Ecosystem , Nitrogen , Animals , Carbon Isotopes/analysis , Fishes , Food Chain , Nitrogen Isotopes/analysis , Rivers
8.
Ecology ; 102(11): e03503, 2021 11.
Article in English | MEDLINE | ID: mdl-34314030

ABSTRACT

Frameworks exclusively considering functional diversity are gaining popularity, as they complement and extend the information provided by taxonomic diversity metrics, particularly in response to disturbance. Taxonomic diversity should be included in functional diversity frameworks to uncover the functional mechanisms causing species loss following disturbance events. We present and test a predictive framework that considers temporal functional and taxonomic diversity responses along disturbance gradients. Our proposed framework allows us to test different multidimensional metrics of taxonomic diversity that can be directly compared to calculated multidimensional functional diversity metrics. It builds on existing functional diversity-disturbance frameworks both by using a gradient approach and by jointly considering taxonomic and functional diversity. We used previously unpublished stream insect community data collected prior to, and for the two years following, an extreme flood event that occurred in 2013. Using 14 northern Colorado mountain streams, we tested our framework and determined that taxonomic diversity metrics calculated using multidimensional methods resulted in concordance between taxonomic and functional diversity responses. By considering functional and taxonomic diversity together and using a gradient approach, we were able to identify some of the mechanisms driving species losses following this extreme disturbance event.


Subject(s)
Floods , Rivers , Animals , Biodiversity , Colorado , Insecta
9.
Nat Commun ; 12(1): 3700, 2021 06 17.
Article in English | MEDLINE | ID: mdl-34140471

ABSTRACT

The relationship between detritivore diversity and decomposition can provide information on how biogeochemical cycles are affected by ongoing rates of extinction, but such evidence has come mostly from local studies and microcosm experiments. We conducted a globally distributed experiment (38 streams across 23 countries in 6 continents) using standardised methods to test the hypothesis that detritivore diversity enhances litter decomposition in streams, to establish the role of other characteristics of detritivore assemblages (abundance, biomass and body size), and to determine how patterns vary across realms, biomes and climates. We observed a positive relationship between diversity and decomposition, strongest in tropical areas, and a key role of abundance and biomass at higher latitudes. Our results suggest that litter decomposition might be altered by detritivore extinctions, particularly in tropical areas, where detritivore diversity is already relatively low and some environmental stressors particularly prevalent.


Subject(s)
Biota , Ecosystem , Rivers , Animals , Biodiversity , Biomass , Body Size , Chironomidae/physiology , Climate , Ephemeroptera/physiology , Insecta/physiology , Plant Leaves/chemistry , Rainforest , Rivers/chemistry , Rivers/microbiology , Rivers/parasitology , Rivers/virology , Tropical Climate , Tundra
10.
Environ Sci Technol ; 55(9): 5868-5877, 2021 05 04.
Article in English | MEDLINE | ID: mdl-33878866

ABSTRACT

Aquatic-to-terrestrial subsidies have the potential to provide riparian consumers with benefits in terms of physiologically important organic compounds like omega-3 long-chain polyunsaturated fatty acids (n-3 LCPUFAs). However, they also have a "dark side" in the form of exposure to toxicants such as mercury. Human land use intensity may also determine whether subsidies provide benefits or come at a cost for riparian predators. We sampled insects as well as Eastern Phoebe (Sayornis phoebe) chicks in 2015-2016 within the southern Finger Lakes region to understand how food quality, in terms of n-3 LCPUFAs and methylmercury (MeHg), of emergent freshwater insects compared with that of terrestrial insects and how land use affected the quality of prey, predator diet composition, and MeHg exposure. Across the landscape, freshwater insects had a significantly higher percentage of the n-3 LCPUFA eicosapentaenoic acid (EPA) compared to terrestrial insects and contained significantly more MeHg than terrestrial insects did. In spite of differences in MeHg concentrations between aquatic and terrestrial insects, chick MeHg concentrations were not related to diet composition. Instead, chick MeHg concentrations increased with several metrics of human land use intensity, including percent agriculture. Our findings suggest that freshwater subsidies provide predators with both risks and benefits, but that predator MeHg exposure can vary with human land use intensity.


Subject(s)
Methylmercury Compounds , Agriculture , Animals , Fatty Acids , Food Chain , Humans , Insecta
11.
Oecologia ; 195(4): 1053-1069, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33738525

ABSTRACT

The ecological consequences of biological range extensions reflect the interplay between the functional characteristics of the newly arrived species and their recipient ecosystems. Teasing apart the relative contribution of each component is difficult because most colonization events are studied retrospectively, i.e., after a species became established and its consequences apparent. We conducted a prospective experiment to study the ecosystem consequences of a consumer introduction, using whole-stream metabolism as our integrator of ecosystem activity. In four Trinidadian streams, we extended the range of a native fish, the guppy (Poecilia reticulata), by introducing it over barrier waterfalls that historically excluded it from these upper reaches. To assess the context dependence of these range extensions, we thinned the riparian forest canopy on two of these streams to increase benthic algal biomass and productivity. Guppy's range extension into upper stream reaches significantly impacted stream metabolism but the effects depended upon the specific stream into which they had been introduced. Generally, increases in guppy biomass caused an increase in gross primary production (GPP) and community respiration (CR). The effects guppies had on GPP were similar to those induced by increased light level and were larger in strength than the effects stream stage had on CR. These results, combined with results from prior experiments, contribute to our growing understanding of how consumers impact stream ecosystem function when they expand their range into novel habitats. Further study will reveal whether local adaptation, known to occur rapidly in these guppy populations, modifies the ecological consequences of this species introduction.


Subject(s)
Poecilia , Animals , Ecosystem , Prospective Studies , Retrospective Studies , Rivers
12.
Sci Adv ; 7(13)2021 03.
Article in English | MEDLINE | ID: mdl-33771867

ABSTRACT

Running waters contribute substantially to global carbon fluxes through decomposition of terrestrial plant litter by aquatic microorganisms and detritivores. Diversity of this litter may influence instream decomposition globally in ways that are not yet understood. We investigated latitudinal differences in decomposition of litter mixtures of low and high functional diversity in 40 streams on 6 continents and spanning 113° of latitude. Despite important variability in our dataset, we found latitudinal differences in the effect of litter functional diversity on decomposition, which we explained as evolutionary adaptations of litter-consuming detritivores to resource availability. Specifically, a balanced diet effect appears to operate at lower latitudes versus a resource concentration effect at higher latitudes. The latitudinal pattern indicates that loss of plant functional diversity will have different consequences on carbon fluxes across the globe, with greater repercussions likely at low latitudes.

13.
Nat Food ; 2(3): 192-197, 2021 Mar.
Article in English | MEDLINE | ID: mdl-37117451

ABSTRACT

With declining capture fisheries production, maintaining nutrient supplies largely hinges on substituting wild fish with economically comparable farmed animals. Although such transitions are increasingly commonplace across global inland and coastal communities, their nutritional consequences are unknown. Here, using human demographic and health information, and fish nutrient composition data from the Peruvian Amazon, we show that substituting wild inland fisheries with chicken and aquaculture has the potential to exacerbate iron deficiencies and limit essential fatty acid supplies in a region already experiencing high prevalence of anaemia and malnutrition. Substituting wild fish with chicken, however, can increase zinc and protein supplies. Chicken and aquaculture production also increase greenhouse gas emissions, agricultural land use and eutrophication. Thus, policies that enable access to wild fisheries and their sustainable management while improving the quality, diversity and environmental impacts of farmed species will be instrumental in ensuring healthy and sustainable food systems.

14.
Glob Chang Biol ; 27(2): 297-311, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33064866

ABSTRACT

A fundamental gap in climate change vulnerability research is an understanding of the relative thermal sensitivity of ectotherms. Aquatic insects are vital to stream ecosystem function and biodiversity but insufficiently studied with respect to their thermal physiology. With global temperatures rising at an unprecedented rate, it is imperative that we know how aquatic insects respond to increasing temperature and whether these responses vary among taxa, latitudes, and elevations. We evaluated the thermal sensitivity of standard metabolic rate in stream-dwelling baetid mayflies and perlid stoneflies across a ~2,000 m elevation gradient in the temperate Rocky Mountains in Colorado, USA, and the tropical Andes in Napo, Ecuador. We used temperature-controlled water baths and microrespirometry to estimate changes in oxygen consumption. Tropical mayflies generally exhibited greater thermal sensitivity in metabolism compared to temperate mayflies; tropical mayfly metabolic rates increased more rapidly with temperature and the insects more frequently exhibited behavioral signs of thermal stress. By contrast, temperate and tropical stoneflies did not clearly differ. Varied responses to temperature among baetid mayflies and perlid stoneflies may reflect differences in evolutionary history or ecological roles as herbivores and predators, respectively. Our results show that there is physiological variation across elevations and species and that low-elevation tropical mayflies may be especially imperiled by climate warming. Given such variation among species, broad generalizations about the vulnerability of tropical ectotherms should be made more cautiously.


Subject(s)
Ephemeroptera , Animals , Colorado , Ecosystem , Ecuador , Insecta , Temperature , Tropical Climate
15.
Am Nat ; 195(6): 964-985, 2020 06.
Article in English | MEDLINE | ID: mdl-32469660

ABSTRACT

Understanding how nutrients flow through food webs is central in ecosystem ecology. Tracer addition experiments are powerful tools to reconstruct nutrient flows by adding an isotopically enriched element into an ecosystem and tracking its fate through time. Historically, the design and analysis of tracer studies have varied widely, ranging from descriptive studies to modeling approaches of varying complexity. Increasingly, isotope tracer data are being used to compare ecosystems and analyze experimental manipulations. Currently, a formal statistical framework for analyzing such experiments is lacking, making it impossible to calculate the estimation errors associated with the model fit, the interdependence of compartments, and the uncertainty in the diet of consumers. In this article we develop a method based on Bayesian hidden Markov models and apply it to the analysis of N15-NH4+ tracer additions in two Trinidadian streams in which light was experimentally manipulated. Through this case study, we illustrate how to estimate N fluxes between ecosystem compartments, turnover rates of N within those compartments, and the associated uncertainty. We also show how the method can be used to compare alternative models of food web structure, calculate the error around derived parameters, and make statistical comparisons between sites or treatments.


Subject(s)
Ecosystem , Food Chain , Models, Statistical , Nitrogen/metabolism , Ammonium Compounds/chemistry , Animals , Light , Markov Chains , Nitrogen Isotopes , Plants/metabolism , Rivers , Trinidad and Tobago , Water/chemistry
16.
PeerJ ; 7: e8060, 2019.
Article in English | MEDLINE | ID: mdl-31769445

ABSTRACT

Anthropogenic threat maps are commonly used as a surrogate for the ecological integrity of rivers in freshwater conservation, but a clearer understanding of their relationships is required to develop proper management plans at large scales. Here, we developed and validated empirical models that link the ecological integrity of rivers to threat maps in a large, heterogeneous and biodiverse Andean-Amazon watershed. Through fieldwork, we recorded data on aquatic invertebrate community composition, habitat quality, and physical-chemical parameters to calculate the ecological integrity of 140 streams/rivers across the basin. Simultaneously, we generated maps that describe the location, extent, and magnitude of impact of nine anthropogenic threats to freshwater systems in the basin. Through seven-fold cross-validation procedure, we found that regression models based on anthropogenic threats alone have limited power for predicting the ecological integrity of rivers. However, the prediction accuracy improved when environmental predictors (slope and elevation) were included, and more so when the predictions were carried out at a coarser scale, such as microbasins. Moreover, anthropogenic threats that amplify the incidence of other pressures (roads, human settlements and oil activities) are the most relevant predictors of ecological integrity. We concluded that threat maps can offer an overall picture of the ecological integrity pattern of the basin, becoming a useful tool for broad-scale conservation planning for freshwater ecosystems. While it is always advisable to have finer scale in situ measurements of ecological integrity, our study shows that threat maps provide fast and cost-effective results, which so often are needed for pressing management and conservation actions.

17.
Science ; 365(6458): 1124-1129, 2019 09 13.
Article in English | MEDLINE | ID: mdl-31515386

ABSTRACT

Tropical montane rivers (TMR) are born in tropical mountains, descend through montane forests, and feed major rivers, floodplains, and oceans. They are characterized by rapid temperature clines and varied flow disturbance regimes, both of which promote habitat heterogeneity, high biological diversity and endemism, and distinct organisms' life-history adaptations. Production, transport, and processing of sediments, nutrients, and carbon are key ecosystem processes connecting high-elevation streams with lowland floodplains, in turn influencing soil fertility and biotic productivity downstream. TMR provide key ecosystem services to hundreds of millions of people in tropical nations. In light of existing human-induced disturbances, including climate change, TMR can be used as natural model systems to examine the effects of rapid changes in abiotic drivers and their influence on biodiversity and ecosystem function.


Subject(s)
Altitude , Ecosystem , Rivers , Tropical Climate , Biodiversity , Humans
18.
Nat Commun ; 10(1): 4281, 2019 09 19.
Article in English | MEDLINE | ID: mdl-31537792

ABSTRACT

Hundreds of dams have been proposed throughout the Amazon basin, one of the world's largest untapped hydropower frontiers. While hydropower is a potentially clean source of renewable energy, some projects produce high greenhouse gas (GHG) emissions per unit electricity generated (carbon intensity). Here we show how carbon intensities of proposed Amazon upland dams (median = 39 kg CO2eq MWh-1, 100-year horizon) are often comparable with solar and wind energy, whereas some lowland dams (median = 133 kg CO2eq MWh-1) may exceed carbon intensities of fossil-fuel power plants. Based on 158 existing and 351 proposed dams, we present a multi-objective optimization framework showing that low-carbon expansion of Amazon hydropower relies on strategic planning, which is generally linked to placing dams in higher elevations and smaller streams. Ultimately, basin-scale dam planning that considers GHG emissions along with social and ecological externalities will be decisive for sustainable energy development where new hydropower is contemplated.

20.
Sci Total Environ ; 681: 503-515, 2019 Sep 01.
Article in English | MEDLINE | ID: mdl-31128341

ABSTRACT

The objective of this study was to evaluate if aquatic pollution promote diet shifts in two livebearer fishes (Poeciliidae): an exotic species, the guppy (Poecilia reticulata), and a native livebearer (Phalloceros uai). The study was carried out in a Brazilian basin highly impacted by anthropogenic activities, especially discharge of domestic and industrial sewage from a region with more than five million human inhabitants. To evaluate the trophic ecology of both native and exotic species it was analysed carbon (δ13C) and nitrogen (δ15N) stable isotopes of fish tissue, food resources and, sewage. Moreover, stable isotopes analyses were coupled with gut contents of the two species to provide additional information about fish diet. Exotic guppy abundance was high in the most polluted site, where P. reticulata assimilated carbon directly from sewage. The native species was absent in the most polluted site, but presented wider niches than the exotic species in almost all other sites. Gut content analyses indicated high consumption of aquatic insects by both species. However, while the native species consumed a diverse suite of insect taxa, the exotic species consumed mainly Chironomidae larvae. We conclude that aquatic pollution promotes diet shifts in both native and exotic species, with both species changing their trophic niches in a similar way according to the level of degradation of the environment. The ability to directly assimilate sewage, together with its capacity to survive in environments with poor water quality and its reproductive strategy, may favour the establishment of exotic guppies in strongly polluted sites.


Subject(s)
Environmental Monitoring , Fishes/physiology , Food Chain , Water Pollution/statistics & numerical data , Animals , Aquatic Organisms/physiology , Brazil
SELECTION OF CITATIONS
SEARCH DETAIL
...