Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
J Fungi (Basel) ; 9(2)2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36836305

ABSTRACT

Epichloë species form bioprotective endophytic symbioses with many cool-season grasses, including agriculturally important forage grasses. Despite its importance, relatively little is known about the molecular details of the interaction and the regulatory genes involved. VelA is a key global regulator in fungal secondary metabolism and development. In previous studies, we showed the requirement of velA for E. festucae to form a mutualistic interaction with Lolium perenne. We showed that VelA regulates the expression of genes encoding proteins involved in membrane transport, fungal cell wall biosynthesis, host cell wall degradation, and secondary metabolism, along with several small-secreted proteins in Epichloë festucae. Here, by a comparative transcriptomics analysis on perennial ryegrass seedlings and mature plants, which are endophyte free or infected with wild type (mutualistic interaction) or mutant ΔvelA E. festucae (antagonistic or incompatible interaction), regulatory effects of the endophytic interaction on perennial ryegrass development was studied. We show that ΔvelA mutant associations influence the expression of genes involved in primary metabolism, secondary metabolism, and response to biotic and abiotic stresses compared with wild type associations, providing an insight into processes defining mutualistic versus antagonistic interactions.

2.
Bio Protoc ; 11(9): e4013, 2021 May 05.
Article in English | MEDLINE | ID: mdl-34124312

ABSTRACT

Epichloë species form agriculturally important symbioses with many cool season grasses. To study these symbioses, such as the interaction of Epichloë festucae with perennial ryegrass (Lolium perenne), host plants can be infected by artificial inoculation of etiolated seedlings. This inoculation is performed by placing mycelium into an incision in the meristem, as previously described by Latch and Christensen (1985). In recent years, this method has been broadly used to study this interaction at the molecular level using different Epichloë festucae mutants that can cause incompatible interactions. We have developed and adapted methods to study four of the most important host plant responses to infection, including cell death, callose deposition, lignin production, and hydrogen peroxide (H2O2) production, which are useful in defining the host response to infection at a very early time point.

3.
Microorganisms ; 8(1)2019 Dec 23.
Article in English | MEDLINE | ID: mdl-31878026

ABSTRACT

VelA (or VeA) is a key global regulator in fungal secondary metabolism and development which we previously showed is required during the symbiotic interaction of Epichloë festucae with perennial ryegrass. In this study, comparative transcriptomic analyses of ∆velA mutant compared to wild-type E. festucae, under three different conditions (in culture, infected seedlings, and infected mature plants), were performed to investigate the impact of VelA on E. festucae transcriptome. These comparative transcriptomic studies showed that VelA regulates the expression of genes encoding proteins involved in membrane transport, fungal cell wall biosynthesis, host cell wall degradation, and secondary metabolism, along with a number of small secreted proteins and a large number of proteins with no predictable functions. In addition, these results were compared with previous transcriptomic experiments that studied the impact of LaeA, another key global regulator of secondary metabolism and development that we have shown is important for E. festucae-perennial ryegrass interaction. The results showed that although VelA and LaeA regulate a subset of E. festucae genes in a similar manner, they also regulated many other genes independently of each other suggesting specialised roles.

4.
Front Plant Sci ; 7: 1546, 2016.
Article in English | MEDLINE | ID: mdl-27833620

ABSTRACT

The seed-transmitted fungal symbiont, Epichloë festucae, colonizes grasses by infecting host tissues as they form on the shoot apical meristem (SAM) of the seedling. How this fungus accommodates the complexities of plant development to successfully colonize the leaves and inflorescences is unclear. Since adenosine 3', 5'-cyclic monophosphate (cAMP)-dependent signaling is often essential for host colonization by fungal pathogens, we disrupted the cAMP cascade by insertional mutagenesis of the E. festucae adenylate cyclase gene (acyA). Consistent with deletions of this gene in other fungi, acyA mutants had a slow radial growth rate in culture, and hyphae were convoluted and hyper-branched suggesting that fungal apical dominance had been disrupted. Nitro blue tetrazolium (NBT) staining of hyphae showed that cAMP disruption mutants were impaired in their ability to synthesize superoxide, indicating that cAMP signaling regulates accumulation of reactive oxygen species (ROS). Despite significant defects in hyphal growth and ROS production, E. festucae ΔacyA mutants were infectious and capable of forming symbiotic associations with grasses. Plants infected with E. festucae ΔacyA were marginally less robust than the wild-type (WT), however hyphae were hyper-branched, and leaf tissues heavily colonized, indicating that the tight regulation of hyphal growth normally observed in maturing leaves requires functional cAMP signaling.

5.
Fungal Genet Biol ; 85: 14-24, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26519220

ABSTRACT

Fungal endophytes belonging to the genus Epichloë form associations with temperate grasses belonging to the sub-family Poöideae that range from mutualistic through to pathogenic. We previously identified a novel endophyte gene (designated gigA for grass induced gene) that is one of the most abundantly expressed fungal transcripts in endophyte-infected grasses and which is distributed and highly expressed in a wide range of Epichloë grass associations. Molecular and biochemical analyses indicate that gigA encodes a small secreted protein containing an imperfect 27 amino acid repeat that includes a kexin protease cleavage site. Kexin processing of GigA liberates within the plant multiple related products, named here as epichloëcyclins, which we have demonstrated by MS/MS to be cyclic peptidic in nature. Gene deletion of gigA leads to the elimination of all epichloëcyclins with no conspicuous phenotypic impact on the host grass, suggesting a possible bioactive role. This is a further example of a ribosomal peptide synthetic (RiPS) pathway operating within the Ascomycetes, and is the first description of such a pathway from a mutualistic symbiotic fungus from this Phylum.


Subject(s)
Endophytes/genetics , Epichloe/genetics , Fungal Proteins/genetics , Poaceae/microbiology , Endophytes/physiology , Epichloe/physiology , Fungal Proteins/chemistry , Fungal Proteins/metabolism , Oligopeptides/genetics , Oligopeptides/metabolism , Peptides, Cyclic/genetics , Peptides, Cyclic/metabolism , Protein Biosynthesis , Ribosomal Proteins/chemistry , Ribosomal Proteins/metabolism , Symbiosis , Tandem Mass Spectrometry
6.
PLoS Genet ; 9(2): e1003323, 2013.
Article in English | MEDLINE | ID: mdl-23468653

ABSTRACT

The fungal family Clavicipitaceae includes plant symbionts and parasites that produce several psychoactive and bioprotective alkaloids. The family includes grass symbionts in the epichloae clade (Epichloë and Neotyphodium species), which are extraordinarily diverse both in their host interactions and in their alkaloid profiles. Epichloae produce alkaloids of four distinct classes, all of which deter insects, and some-including the infamous ergot alkaloids-have potent effects on mammals. The exceptional chemotypic diversity of the epichloae may relate to their broad range of host interactions, whereby some are pathogenic and contagious, others are mutualistic and vertically transmitted (seed-borne), and still others vary in pathogenic or mutualistic behavior. We profiled the alkaloids and sequenced the genomes of 10 epichloae, three ergot fungi (Claviceps species), a morning-glory symbiont (Periglandula ipomoeae), and a bamboo pathogen (Aciculosporium take), and compared the gene clusters for four classes of alkaloids. Results indicated a strong tendency for alkaloid loci to have conserved cores that specify the skeleton structures and peripheral genes that determine chemical variations that are known to affect their pharmacological specificities. Generally, gene locations in cluster peripheries positioned them near to transposon-derived, AT-rich repeat blocks, which were probably involved in gene losses, duplications, and neofunctionalizations. The alkaloid loci in the epichloae had unusual structures riddled with large, complex, and dynamic repeat blocks. This feature was not reflective of overall differences in repeat contents in the genomes, nor was it characteristic of most other specialized metabolism loci. The organization and dynamics of alkaloid loci and abundant repeat blocks in the epichloae suggested that these fungi are under selection for alkaloid diversification. We suggest that such selection is related to the variable life histories of the epichloae, their protective roles as symbionts, and their associations with the highly speciose and ecologically diverse cool-season grasses.


Subject(s)
Alkaloids , Claviceps , Epichloe , Ergot Alkaloids , Selection, Genetic , Alkaloids/chemistry , Alkaloids/classification , Alkaloids/genetics , Alkaloids/metabolism , Claviceps/genetics , Claviceps/metabolism , Claviceps/pathogenicity , Epichloe/genetics , Epichloe/metabolism , Epichloe/pathogenicity , Ergot Alkaloids/genetics , Ergot Alkaloids/metabolism , Gene Expression Regulation, Fungal , Hypocreales/genetics , Hypocreales/metabolism , Neotyphodium , Poaceae/genetics , Poaceae/metabolism , Poaceae/parasitology , Symbiosis/genetics
7.
Genome Biol Evol ; 3: 1253-64, 2011.
Article in English | MEDLINE | ID: mdl-21948396

ABSTRACT

Miniature inverted-repeat transposable elements (MITEs) are abundant repeat elements in plant and animal genomes; however, there are few analyses of these elements in fungal genomes. Analysis of the draft genome sequence of the fungal endophyte Epichloë festucae revealed 13 MITE families that make up almost 1% of the E. festucae genome, and relics of putative autonomous parent elements were identified for three families. Sequence and DNA hybridization analyses suggest that at least some of the MITEs identified in the study were active early in the evolution of Epichloë but are not found in closely related genera. Analysis of MITE integration sites showed that these elements have a moderate integration site preference for 5' genic regions of the E. festucae genome and are particularly enriched near genes for secondary metabolism. Copies of the EFT-3m/Toru element appear to have mediated recombination events that may have abolished synthesis of two fungal alkaloids in different epichloae. This work provides insight into the potential impact of MITEs on epichloae evolution and provides a foundation for analysis in other fungal genomes.


Subject(s)
DNA Transposable Elements , Endophytes/genetics , Genome, Fungal , Hypocreales/genetics , Inverted Repeat Sequences , Poaceae/microbiology , Endophytes/isolation & purification , Evolution, Molecular , Hypocreales/isolation & purification , Molecular Sequence Data
8.
Appl Environ Microbiol ; 73(8): 2571-9, 2007 Apr.
Article in English | MEDLINE | ID: mdl-17308187

ABSTRACT

Clavicipitaceous fungal endophytes of the genera Epichloë and Neotyphodium form symbioses with grasses of the subfamily Pooideae, in which they can synthesize an array of bioprotective alkaloids. Some strains produce the ergopeptine alkaloid ergovaline, which is implicated in livestock toxicoses caused by ingestion of endophyte-infected grasses. Cloning and analysis of a nonribosomal peptide synthetase (NRPS) gene from Neotyphodium lolii revealed a putative gene cluster for ergovaline biosynthesis containing a single-module NRPS gene, lpsB, and other genes orthologous to genes in the ergopeptine gene cluster of Claviceps purpurea and the clavine cluster of Aspergillus fumigatus. Despite conservation of gene sequence, gene order is substantially different between the N. lolii, C. purpurea, and A. fumigatus ergot alkaloid gene clusters. Southern analysis indicated that the N. lolii cluster was linked with previously identified ergovaline biosynthetic genes dmaW and lpsA. The ergovaline genes are closely associated with transposon relics, including retrotransposons and autonomous and nonautonomous DNA transposons. All genes in the cluster were highly expressed in planta, but expression was very low or undetectable in mycelia from axenic culture. This work provides a genetic foundation for elucidating biochemical steps in the ergovaline pathway, the ecological role of individual ergot alkaloid compounds, and the regulation of their synthesis in planta.


Subject(s)
Ergotamines/metabolism , Genes, Fungal , Hypocreales/genetics , Multigene Family , Poaceae/microbiology , Aspergillus fumigatus/genetics , Blotting, Southern , Claviceps/genetics , Cloning, Molecular , Conserved Sequence , DNA Transposable Elements/genetics , DNA, Fungal/chemistry , DNA, Fungal/genetics , Gene Expression , Gene Order , Hypocreales/metabolism , Molecular Sequence Data , Peptide Synthases/genetics , Sequence Homology, Amino Acid
9.
J Bacteriol ; 184(11): 3086-95, 2002 Jun.
Article in English | MEDLINE | ID: mdl-12003951

ABSTRACT

The Mesorhizobium loti strain R7A symbiosis island is a 502-kb chromosomally integrated element which transfers to nonsymbiotic mesorhizobia in the environment, converting them to Lotus symbionts. It integrates into a phenylalanine tRNA gene in a process mediated by a P4-type integrase encoded at the left end of the element. We have determined the nucleotide sequence of the island and compared its deduced genetic complement with that reported for the 611-kb putative symbiosis island of M. loti strain MAFF303099. The two islands share 248 kb of DNA, with multiple deletions and insertions of up to 168 kb interrupting highly conserved colinear DNA regions in the two strains. The shared DNA regions contain all the genes likely to be required for Nod factor synthesis, nitrogen fixation, and island transfer. Transfer genes include a trb operon and a cluster of potential tra genes which are also present on the strain MAFF303099 plasmid pMLb. The island lacks plasmid replication genes, suggesting that it is a site-specific conjugative transposon. The R7A island encodes a type IV secretion system with strong similarity to the vir pilus from Agrobacterium tumefaciens that is deleted from MAFF303099, which in turn encodes a type III secretion system not found on the R7A island. The 414 genes on the R7A island also include putative regulatory genes, transport genes, and an array of metabolic genes. Most of the unique hypothetical genes on the R7A island are strain-specific and clustered, suggesting that they may represent other acquired genetic elements rather than symbiotically relevant DNA.


Subject(s)
Genes, Bacterial , Rhizobiaceae/genetics , Symbiosis , Amino Acids/metabolism , Carbon/metabolism , Gene Transfer, Horizontal/genetics , Genes, Regulator , Lotus/microbiology , Microtubule Proteins/biosynthesis , Microtubule Proteins/genetics , Molecular Sequence Data , Multigene Family , Nitrogen Fixation/genetics , Phosphates/metabolism , Rhizobiaceae/metabolism , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...